= DL

Building IDL
Applications

IDL Version 5.4
RE S EARC H September, 2000 Edition
SYST EMS Copyright © Research Systems, Inc.
A sssssssssssssss All Rights Reserved

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research SystemsInc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software = Vision ~ is atrademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities

Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-

ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

OVEIVIBW ettitiiiee ettt e e e e e e e e e e e e e e et eeaebaa e e e e e e eeeeeeeeeeeeeneennnns 13
What iSan IDL APPlICALIONTocueeieiiieeiesiesie ettt st nee e e 14
About Building ApplicationSiN IDLcccoiiiiiieie e 15

Part 1: Components of the IDL Language
Chapter 2:

Expressions and OPeratorsccuuciiiiviieiiiii et 19
(@< V= S 20
[DL OPEIALONS ...veeueetesteeieete sttt ettt sttt h et e et e b e e e e s b e sbeese e b e ahesheese e besbesae e e e nbesneens 21
(O]01c £ 0] gl 110 6 =0 32
Type and SErucCture Of EXPrESSIONSccccvirerierirerererieeeese s sse s e seenes 34
Chapter 3:

Constants and Variables ... 39
D= 2 I8 0T PRSPPI 40

Building IDL Applications 3

CONSLANES ...ttt ettt sttt b e s b et e b sb e s he e e e b e sbe et e sbesbeeae e e e sbesbeenne b 43
Type CONVErSION FUNCLIONSocuoieeieeiiiiesieieeee st ene s 49
VATADIES ...t e 52
SYSIEEM VANTADIES ... nne s 55
COMMON BIOCKS ...ttt sttt nne s 56

Chapter 4.

11] Yo [TP PPPPPPPPPPPPPP 59
L@ = V= SRR 60
SHING OPEALIONSocvecueeeiiiticieite st ere e e e e e s e et e testesre et e sbesseeasestestesseesestesseensensens 61
Non-string and NON-SCalar ATQUMENTSccceeririerieeeeniese e s 62
StriNG CONCALENALIONcocviivieiieiesieceeiee st e e et e e et s be s e et e sbesae e e e sresressaeseseesreeneensens 63
USiNg STRING t0 FOrMEL DEAccvrvereiieieeniesiesieeeesiese e 64
Byte ArgumentS and SIHNGScoceieieeiecc ettt sre e e 65
CASE FOITING ..ttt b e b s b e e e n e b renn e e nne s 67
RTAT TR =S o= o PR 68
Finding the Length Of @ SIIrNGooveeeiriieeereee s 70
SUDSLIINGS vuveeteeieiti e ctes ettt e rte st s e s e te et e e s be s beese e tesbeere e s e sbesaeensestestesneenseseesteensentens 71
Splitting and JOINING SIHNGSveueeeiririerieieeees et sr e e ene s 74
COMPANING SEFNGS .veveeeeeitiitieeeite st e e e e e s e s e eeestesresreessesbesaeesestestesssensessesseesensens 75
Learning About Regular EXPreSSIONScceeririerienieienesesiese s 79
Chapter 5:

N = 1V T U 83
L@ < V= SRS RRN 84
ATTEY SUDSCIIES ..viviieieiieii sttt se e 85
Array SUDSCHIPL SYNAX: [] VS, () weveeerrerreerieeseeseeseeseesteesteesteesseesteesressseesseesseessesssesnsnnns 86
SUDSCIiPt EXAMPIES ...t nne s 87
Sl 01 B = 0 - 90
SIrUCTUNE OF SUDBITAYSevveeeeeiieierie sttt sttt b e nne s 91
USING ArrayS @S SUDSCIIPLS ..eeiveeieeiie e e e ste e e e te e ste e e e e reenreeneeenne e 92
Combining Array SUBSCIPES With OtNENSccoiiieeereee e 94
Storing Elements With Array SUDSCIIPLScoueieriieriir e see e s e 96
Chapter 6:

R 0 o A0 PP 97
OVEIVIBIW ..ottt sttt b e et ae bbb et b e e b e st et et e bt et e s b e st e e enenbe s 98

Contents Building IDL Applications

Creating and DefiNiNg SLIUCLUMESocviuieeeriece ettt sreene 99
SITUCIUIE REFEIEINCESovieeeeeie ettt st eseesteeneenaeseeeneas 102
USINg HELP With SEFUCIUIES ..ottt 104
Parameter Passing With SITUCLUIESoceieeieninesereeeeese e 105
ATTAYS OF SLIUCIUMES ...ttt st e et e ne e e sresreens 108
Sructure INPUL/OULPUL ..ot 110
Advanced SITUCIUIE USAOEccueeeeiiiiecieie ettt e st sresreens 112
Automatic Structure DEfINItIONooeeeieeee e 114
Relaxed Structureé ASSIGNMENTocviieeeeiese et a e resne e 116
Chapter 7:

o]] (=] PSSP 119
OVEIVIBIW ..ttt ie sttt te et e st sse e e e be s be e st e testeeseeneesaesseeneestesnesnseneestenneensesrenrnns 120
HEAD VAITADIES ...t sttt s re e e sne s 121
Creating Heap VariablEsoooiiiieeeee e 123
Saving and Restoring Heap Variables ... 124
Pointer HEap VariablEs ..o 125
T 1] 1= PSSR 126
OPErationS 0N POINEENSccuciieiriiriesieee sttt ss e s b e ebe e e 129
Dangling REFEIENCESocueeeiieciee et st bbb re e e sae s 133
Heap Variabl@ LEaKAOEccevereeieeeiesestereee ettt 134
0T T 010 V=T (1 PR 136
Freaing POINTENSooiieeieese et b e nn e 137
O 110 gt 10 0] = 138
Chapter 8:

Files and INPUL/OULPUL ...cooii i s 145
OVEIVIBIW ..ttt te et e st s e e e e tesbeessestesteese e tesaesse e s e stessesnsestesresnsenteseenrens 146
L= 1O T 1 S 147
Unformatted INPUI/OULPULooveeeeriiriisieriee st 152
Formatted INPUE/OULPULeeieeieciece ettt s sne e e snne s 153
OPENING FlES ...ttt ne e 155
(17 1 o 1 1 = 156
Logical Unit NUMDErS (LUNS) ..ot 157
Reading and Writing Very Large FIlES ..ottt 160
Using Free FOrmat INPUL/OULPULcovvirerieeeesesesieseeese s 162
Using Explicitly Formatted INPUt/OULPULcooceiierieeee et 167

Building IDL Applications Contents

FOIMEE COUESeveiirieieeeiesie ettt bbbt st s a et b e e e e e ene s 172
Using Unformatted INPUL/OULPULciviieereeenisieseeeeesi e 197
Portable Unformatted INPUL/OULPULc.eeveeeeiiiiceerie et 204
ASSOCIALED INPUL/OULPUL ...ttt e 209
File Manipulation OPErationsccceeceieieeieese s eeesie e esie st eeesresre e naesees 214
UNIX-SPeCific INFOMELIONoveeiiieiiieieeeeese et 224
VMS-SpeCific INFOrMELIONcceeeeececece e 227
Windows-Specific INFOrMBELIONccoiieieeiiineseseeee e 237
Macintosh-Specific INFOrMationcccoiv e 238
SCIENtifiC DA FOIMELScooveiirieeeee ettt ee e e e e 239
Support for Standard Image File FOrMaLScccveeeiiniiiee e 240

Part 2: Basics of IDL Programming
Chapter 9:

Introduction to IDL Programmingcccceeeiiiiiiiiiiiieeeeeien e 243
What iSan IDL Program?ccceieeieeiee e see e seeseesessiessesssesssessnesssesssesssessnessnessnns 244
USING tNE IDL EQITOr ...ttt 246
Creating a SimpPle Program ..o ieeiee e see e e sre e s e e eesre s sre e sreesseesseesseesseens 251
Compiling and RUNNING Y OUr Programccoceeereerenenenieeeesesie e 252
Commenting YOUr IDL COUEcceeveeiieieesecsee et e e teeste e e e sae s e nre e nee e 255
Chapter 10:

F 1= o 110 1T o P 257
Overview of the AsSignMment SLEEEMENLc.covvireeriieceere e 258
Assigning aValueto aVariable ... 260
Assigning Scalarsto Array EIEMENESccveiiiiiecece et 261
Assigning Arraysto Array EIEMENTScceoeriiiieieeerereeee e 262
Avoid USING RANGE SUDSCIIPLS ...veeeeeieiiecieciesie sttt sttt nne s 264
Using Associated FIle Variables ... 266
Chapter 11:

Program CoNntrol ..o e 267
OVEIVIBIW ..ttt ettt b et e b et et e bt st e b et e e et be st e b et e e nne e 268
COomMPOUN SEBLEMENLScveeeeeieriesierieseee et sr e s e e e ene s 269
ConditionNal SEALEMENLSc.evveeeirisirie e sr e e e 272
L OOP SEAEEMENLScveieeeieeiesieeee et sr s b n e sr e e e nesresneene e 279
JUMP SLALEMENLS ...t e e e e e e b e e e saee e sareesrreeans 286

Contents Building IDL Applications

Chapter 12:

Procedures and FUNCLIONScooviiiiiiiiiiiiiiiiieeeeeeeee e 289
OVEIVIBIW ..ttt bbbttt b et b e bt b e e et bt b s b et et se et e ne et 290
DefiNiNg @PrOCEAUNEcouiiiiieieeeeeesse et 291
(O |1 gTo k= W 0000 (U] = SRS 292
DefiNiNg @FUNCHION ..o 293
PArBIMELETS ...ttt b ettt b et b e b e et et b sre et b sae e 296
USiNg KeYyWOrd ParameterScccoeeiririerieie st 299
KeyWOord INNEITANCEoceeeeecie ettt s n et ne s 301
Entering Procedure DEfINITIONSccccoiiirieiereneseseseee e 306
HOW IDL RESOIVES ROULINESc.veueeiiiiiriinieieee sttt st 308
Parameter Passing MEeChaniSM ..o 309
(O o AV = P T o USSR 311
Setting Compilation OPLIONSccereeeeririrere s 313
Advicefor Library AULNOIScccoiiiiiici e st 315

Part 3: Creating Applications in IDL
Chapter 13:

Creating IDL ProOJECIS .ouuuiiiiiiiiiii ettt e e 319
OVEIVIBIW ..ttt s e st r e ne e e e st nn e e r e e e e nennenren s 320
Where to Store the FileSfor @PrOjECtcoveeeeririneeeee s 324
(O = (] 1o = 1 (0= 326
Opening, Closing, and Saving PrOJECESccoerveerireniieieese e 328
MOdifying ProjECt GIOUDScocveieiieeiieeiieeteeieeieseeseeseeseeseeseesneesneeeneesneesneesnnesneens 329
Adding, Moving, and RemMOVING FilESccciiriiiireee s 332
Working With FileSin @PrOJECEcceoe i 335
Setting the OptioNS fOr @PIOJECEccueveeriiireeee e 341
Selecting the BUild OFdErc.oocv ettt et et 344
Compiling an Application from aProjectcccceverineinenesereeeesese e 346
BUIAING @PIOJECE ...ttt st s sne e s e e 347
Running an Application from @aProjeCtcccveiinineinereseeeeese e 349
g Lo (] Lo = W 10 = o PR 350
Chapter 14:

Writing Efficient IDL Programscccoeeeeeiiniimieeeee e 353
OVEIVIBI ..ttt h bbbt b et b e n et ne b s b e b enas 354

Building IDL Applications Contents

EXpression EVAlUation OFAErccvceeieiececeese ettt st 355
AVOId [F SEALEMENES ..ottt eesresneenee e 356
Use Vector and Array OPErationNScceieeieeieese i eeesie e seesee e seeaessesresseessessesseesesses 357
Use System Functions and ProCEAUIESccirerieieeineienieseeeee s 359
Use Constants Of the COrreCt TYPE ..ovecveiiecieeeese ettt 360
Eliminate INvariant EXPreSSIONSc.ccoirreieerenenseeeessesressesesese s seesseeenens 361
A AT T= I = 11 o O SS 362
IDL IMPIEMENTALION ...t 368
The IDL COUE Profil € ...ttt 369
Chapter 15:

Solutions to Common IDL TaSKScoeeuviiiiiiiiiiieieeeeeeeeeeeee e 375
Determining Variabl@ SCOPEccccovreriiriiieieesesesiei st 376
Determining if aKeyWOrdiS SELccvcceiiceccse et 377
Determining the Number of Array Elementsin an Expression or Variable 378
Determining if aVariableiSDEfINEdcccoveveiiiiiiereee e 379
Supplying Values for Missing KEYWOIdScocoeririnenieieeene e 380
Supplying Values for Missing ArgUMENLScccccveeveneieeieseseeeese e sreese e sseeee e 381
Determining the SIiZe/TYPe Of 8N AITAY ...cc.coveiririereieesese e 382
Determining if a Variable Contains a Scalar or Array Valuecccccoveveveeveveceennenne. 385
Calling Functions/ProcedureS INAITECHlYccccoveieierieninesieeeesese e 386
Executing Dynamically-Created IDL COdEcccveeeveiiiiese et 387
Chapter 16:

Building Cross-Platform Applicationsccccvvvvviiiiiiciiiie e 389
L@ Y= V= 390
Which Operating System IS RUNNING?ccoeiieiieiiesec s see s see e sree e e snees 391
File and Path SPECITICAlIONSccccvriririiieieeres e 392
ENVIronment VariableSsoo.o oot 395
1S o 1 L 396
MEth EXCEPLIONS ...c.veeieieiie e es ettt et et eneesnee e e e e nneeneesnneenes 399
OPErating SYSIEM ACCESS ...c.eeuveuerierterierieiesesie st seesee et sseste st se et saesbesbe s e e seseesbenseneeseees 400
Display Characteristics and PalettesScoccevviririir e e 401
0] 0115 TSSOSO 402
11T 403
SAVE @Nd RESTOREoooitiieeee ettt ettt ettt be e sbe e sbe e beesbeesbeenreens 404
LAY [0 T £ 405

Contents Building IDL Applications

USING EXErNaAl COUEvoeeeieieceeee ettt sttt s n et ne s 408
IDL DEAMINES ISSUES ...c.eeieiieieeeeeeieeieeiesee st eeeeeeseesteeseesteseesseeneeseesaeeneessessesneeneeseesenenes 409
Chapter 17:

Controlling EITOrS oot e e e e 411
(@Y7 V1= T SO 412
Default Error-Handling MeChaniSM ..o 413
Disappearing Variables ..ot s e e 414
Controlling Errors USING CATCH ...t 415
Controlling Errors Using ON_ERRORcccoieiiiiieeiese et saesresneas 419
Controlling INPUY/OULPUL ETTOIScveeeiriiiiesieeeeeeses e 420
o ST = oo R 422
Obtaining Traceback INFOrMELIONccveieieiiiieere e e 424
o gl =T o | 1T o R 425
= 0 = 0] S 427
Chapter 18:

Debugging an IDL Programccccoeeeiiiiiiii e 433
OVEIVIBIW ...ttt sttt st e e e be s et et et e eaeeneeeeaaesaeeneeseesaeenseseeseeeneenseseenneas 434
Debugging COMMEBNGScoeruiriiieirieriesie ettt b e e s b e e 435
The Variable WatCh WINAOWcc.ooiiiiiie e 444
Chapter 19:

Extending the IDL Online Help Systemccccciiiiiiiiiiiiiiiiceccceeen, 449
OVEIVIBIW ..ttt b ettt st et b bt b et et bt e b b et et be et e na et 450
Online Help Viewers Included With IDLcccoiiiiieieeeseeeeeseseseeee e 451
Accessing Online HElP fFrOM IDL ..c..oviceeee et 454
Alternativesto Traditional HElP SYSIEMSccooiiiiiiceeereeeee s 458

Part 4: Using IDL Objects
Chapter 20:

ODJECT BASICS ceiiiiiiiieiiiie ittt ettt e e 463
Object-Oriented Programmingc.ccoeceeererereeiesieseseseesessessessessesessessessessesessessessessns 464
IDL ODJEC OVEIVIEW ...ttt 465
ClaSS SITUCTUINES ...ttt ettt b e et b bt e et b e e e 467
INNEITTANCE ...t r e e sr e nn e nrenr s 469
Object HEap VariahleSccciiiiiieeeseerie st 471

Building IDL Applications Contents

10

AN TU] oo =S 473
The ODJECE LITECYCIE ... 474
(@ 01c 1= (o] 1Y 0 @] o= 1= 477
Obtaining Information about ODJECESccoiiiriiee e 479
MELNOT ROULINEScviieniiieiisiesieie sttt sttt st s b e e ene s 481
MELNOT OVEITIAING .eeveeeieeiiriisieeee et n e 485
(@ o 1= ot = 101010 =S 488

Part 5: Creating GUIs

Chapter 21.:

Using the IDL GUIBUIIAErcovviiiiiiiii e 491
L@ Y= V= 492
Starting the IDL GUIBUITAES ..o 494
Creating an Example APPliCALIONcooee e 496
IDL GUIBUIIAEr TOOIS ...ooviieieeiesie ettt sttt nae e 507
AT [0 @ 0T = 1 o R 520
GENEIAING FITES ..t 523
IDL GUIBUIIAEr EXAMPIESoveeeeieieeiesieieeeesie ettt nee e s 525
WidQEL PrOPEITIES ..ottt st e ene s 539
Common Widget PropertiEScceeiieiieiiesecreeseeseeseeseese e s e e e s stessreesreesneesseesseesseens 540
Base Widget PrOPEITiEScoiiirieieerie sttt s 546
BULtON WiIdQEL PrOPEITIESocveeceeecee ettt st 557
TEXt WIAQEL PrOPEITIESc.ooiiieiieieieies s 561
Label Widget PrOPEITIEScoceiieecr ettt s s s e 566
Slider Widget PrOPEITIESccueeeerieiiriesieieesie ettt 568
Droplist Widget PrOPEITIEScoceeiieirce ettt se st 570
LiStboX Widget ProPErtiesccoeeeeririirieieeneesie ettt s 572
Draw Widget PrOpErtIEScccviieiiiieeie e seesee e see e seesae st e e see s e e eneesnee s 575
Table Widget PrOPEITIESccooiiiieerese ettt 581
Chapter 22:

LAY Ko 1= RS SURPPPP 589
L@ Y= V= S 590
RTAY T (o= 1Y o= PO 592
ManiPUlELING WIOGELScoueriiieieeeeete st 597
Examples of Widget Programimingcccceeceeieieceeseseseese e see e see e 598

Contents Building IDL Applications

The Widget Application MOElc.ooeeiiiicicce e 599
Creating Widget APPIICELIONScreeeeriirieseere s 602
Widget EXAMPIE L ...ttt st et sr e reens 605
WIAGEL VAIUES ...ttt 607
WidQEt USEN VAIUES ..ottt sttt snesreens 610
WIAGEL EVENES ... 611
WidQet EXAMPIE 2 ...ttt st neea e srenreens 617
USING DIraW WIGQELS ..ot 619
(O 110 1Y/ = 0 S SURR 621
COoNtrolliNG WITGELScveeiieeeeeiestereee e 626
Widget EXAMPIE 3 ...ttt a et st sr e reens 629
WIOGEL SIZING ettt n e e nenn s 631
Event Processing ANd CallDaCKsSccceveiiiicieieseseeeece et 637
Managing Widget AppliCation SEALEccceoeierireriereeeeere e 640
(0019107018110 VAV T [0 = £ USRS 642
Tipson Creating Widget APPlICELIONSceoeeeeiririerieeeese e 644
Compound Widget EXAMPIEccveeeieiiceee ettt 646
Appendix A:

VMS Floating-Point Arithmetic in IDLccccoviiiiiiiiiiiiiiiieeeeeeee 655
OVEIVIBIW ..ttt sttt e e te st e e st e eesteeseeneesbesseeneestesnesnsestesteeneensensenrnns 656
VAX Floating-Point Format Backgroundcccccceeeeeiieiesieeieese e 657
TrANSITION ISSUES ...eovivieeieriesiecteesie st e e e ettt sae e e e stesteeseensestesseeneentenrenneas 659
A Warning About Floating-Point Conversionsin iDLccccceceviiicveevese e 661
A Strategy for Converting VIMS Programsccoeveeeieeeseneneneeiesese e seenes 662
USING CALL_EXTERNAL oottt ettt 664
A Note onthe VMS G FIOaE FOMMALcoouiieiieeese et 666
O X et a s 667

Building IDL Applications Contents

Chapter 1:

Overview

This chapter includes information about the following topics:

What isan IDL Application? 14 About Building Applicationsin IDL

Building IDL Applications

13

14 Chapter 1: Overview

What is an IDL Application?

We usetheterm “IDL Application” very broadly; any program written in the IDL
languageis, in our view, an IDL application. IDL Applications range from the very
simple (@aMAIN program entered at the IDL command prompt, for example) to the
very complex (large programs with full-blown graphical user interfaces, such as
ENVI). Whether you are writing a small program to analyze asingle data set or a
large-scale application for commercial distribution, it is useful to understand the
programming concepts used by the IDL language.

Can | Distribute My Application?

You can freely distribute IDL source code for your IDL applicationsto colleagues
and otherswho use IDL. (If you intend to distribute your applications, it is a good
ideato avoid any code that depends on the qualities of a specific platform. See
“IVERSION” in Appendix D of the IDL Reference Guide and “ Creating Widget
Applications’” on page 602 for some hints on writing platform-independent code.) Of
course, IDL applications can only be run from within the IDL environment, so
anyone who wishes to run your IDL application must have accessto an IDL license.

If you would like to distribute your IDL application to people who do not have access
toan IDL license, you may wish to consider aruntime IDL licensing agreement.
Runtime IDL licenses allow you to distribute a special version of IDL along with
your application. Contact your distributor or Research Systems sales representative
for information about runtime licensing.

What is an IDL Application? Building IDL Applications

Chapter 1: Overview 15

About Building Applications in IDL

IDL is a complete computing environment for the interactive analysis and
visualization of data. IDL integrates a powerful, array-oriented language with
numerous mathematical analysis and graphical display techniques. Programmingin
IDL isatime-saving alternative to programming in FORTRAN or C—using IDL,
tasks which require days or weeks of programming with traditional languages can be
accomplished in hours. You can explore data interactively using IDL commands and
then create complete applications by writing IDL programs.

Advantages of IDL include:

IDL isacomplete, structured language that can be used both interactively and
to create sophisticated functions, procedures, and applications.

Operators and functions work on entire arrays (without using loops),
simplifying interactive analysis and reducing programming time.

Immediate compilation and execution of IDL commands provides instant
feedback and “hands-on” interaction.

Rapid 2D plotting, multi-dimensional plotting, volume visualization, image
display, and animation allow you to observe the results of your computations
immediately.

Many numerical and statistical analysis routines—including Numerical
Recipes routines—are provided for analysis and simulation of data.

IDL’s flexible input/output facilities allow you to read any type of custom data
format. Support is also provided for common image standards (including
BMP, JPEG, and XWD) and scientific data formats (CDF, HDF, and
NetCDF).

IDL widgets can be used to quickly create multi-platform graphical user
interfaces to your IDL programs.

IDL programs run the same across all supported platforms (Unix, VMS,
Microsoft Windows, and Macintosh systems) with little or no modification.
This application portability allows you to easily support a variety of
computers.

Existing FORTRAN and C routines can be dynamically-linked into IDL to add

specialized functionality. Alternatively, C and FORTRAN programs can call
IDL routines as a subroutine library or display “engine”.

Building IDL Applications About Building Applications in IDL

16 Chapter 1: Overview

About Building Applications in IDL Building IDL Applications

Part I: Components
of the IDL
Language

Chapter 2:

EXxpressions and
Operators

The following topics are covered in this chapter:

OVEIVIEW ... 20 Operator Precedence

IDLOperatorsoovvviii i 21 Typeand Structure of Expressions

Building IDL Applications

19

20

Chapter 2: Expressions and Operators

Overview

Overview

Variables and constants are combined into expressions using operators and functions,
and providing aresult. Expressions can be combined with other expressions,
variables, and constants to yield more complex expressions. In IDL, unlike
FORTRAN or C, expressions can be scalar- or array-valued.

There are many types of operatorsin IDL. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), and Boolean arithmetic (AND, OR, NOT, and XOR) — other operators exist to
find minima, maxima, select scalars and subarrays from arrays (subscripting), and to
concatenate scalars and arrays to form new arrays.

Functions, which are operatorsin themselves, perform operations that are usually of a
more complex nature than those denoted by simple operators. Functions exist in IDL
for data smoothing, shifting, transforming, evaluation of transcendental functions,
and other operations.

Expressions can be arguments to functions or procedures. For example, the
expression SIN(A*!PIl) evaluates the variable A multiplied by the value of T, then
appliesthe trigonometric sine function. This result can be used as an operand to form
amore complex expression or as an argument to yet another function (e.g.,
EXP(SIN(A*!PI)) evaluates e3" ™),

Building IDL Applications

Chapter 2: Expressions and Operators 21
IDL Operators

As described above, operators are used to combine terms and expressions. IDL
supports the following types of operators:

e Parentheses

e Sguare Brackets

e Mathematical Operators

e Minimum and Maximum Operators
e Matrix Multiplication

» Array Concatenation

e Boolean Operators

e Relationa Operators
Parentheses

Parentheses are used to group expressions and to enclose function parameter lists.
Parentheses can be used to override the order of operator evaluation described above.
Examples:

; Parent heses encl ose function argunment |ists.
SIN(ANG * Pl /180.)

; Parent heses specify order of operator eval uation.
(A +5)/B

The right parenthesis must always close the list begun by the |eft parenthesis.
Square Brackets

Square brackets are used to create arrays and to enclose array subscripts.

; Use brackets when assigning elenents to an array.
ARRAY = [1, 2, 3, 4, 5]

; Brackets encl ose subscripts.
ARRAY[X, Y]
Note

Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to

Building IDL Applications IDL Operators

22 Chapter 2: Expressions and Operators

work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()” on page 86 for additional details.

Mathematical Operators

There are seven basic IDL mathematical operators, described bel ow.
Assignment

The equa sign (=) isthe assignment operator. The value of the expression on the
right hand side of the equal sign is stored in the variable, subscript element, or range
on the left side. See Chapter 10, “Assignment” for more information. For example,
the following assigns the value 32 to A.

A= 32
Addition

The positive sign (+) isthe addition operator. When applied to strings, the addition
operator concatenates the strings. For example:

;Store the sumof 3 and 6 in B.
B=3+6

;Store the string value of "John Doe" in B.
B ='John'" + ' ' + 'Doe'

Subtraction and Negation

The negative sign (-) is the subtraction operator. Also, the minus sign is used as the
unary negation operator. For example:

;Store the value of 5 subtracted from9 in C
C=9-5

; Change the sign of C
c=-C

Multiplication

The asterisk (*) is the multiplication operator. For example:

; Store the product of 2 and 5 in variable C
C=2*5

Division

The forward slash (/) is the division operator. For example:

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 23

; Store the result of 10.0 divided by 3.2 in variable D
D=10.0/3.2

Exponentiation
The caret () isthe exponentiation operator. A”B is equal to A raised to the B power.
For real numbers, A"B is evaluated as follows:

e If Alisareal number and B is of integer type, repeated multiplicationis
applied.

« If both A and B arereal (non-integer), the formula AB = €M is evaluated.

« AYisdefinedas 1.

For complex numbers, A”B is evalutated as follows. The complex number A can be
represented as A = a+ ib, wherea istherea part, and ib is the imaginary part. In
polar form, we can represent the complex number as A = re® =r cosB +ir siné,
wherer cosB isthereal part, and ir sin@ istheimaginary part:

« If Aiscomplex and B isreal, the formulaAB = (r&®)B = rB (cosB6 + isinB6) is
evaluated.

« If Aisrea and B is complex, the formula AB = e8'™s evaluated.

« If both A and B are complex, the formula AB = eB" is evaluated, and the
natural logarithm is computed to be In(A) = In(re'e) =In(r) +i6.

Modulo

The keyword MOD isthe modulo operator. | MOD J isequal to the remainder when
| isdivided by J. The magnitude of the result is lessthan that of J, and its sign agrees
with that of . For example:

; Assign the value of 9 nodulo 5 (4) to A
A =9 MDS5

; Conput e angl e nodul o 2p.
A =(ANGLE + B) MOD (2 * IPI)

Minimum and Maximum Operators

The IDL minimum and maximum operators return the smaller or larger of their
operands, as described below. Note that negated values must be enclosed in
parentheses in order for IDL to interpret them correctly.

Building IDL Applications IDL Operators

24 Chapter 2: Expressions and Operators

The Minimum Operator

The“lessthan” sign (<) isthe IDL minimum operator. The value of “A <B” isequal
to the smaller of A or B. For example:

;Set A equal to 3.
A=5<3

;Set A equal to -6.
A=5<(-6)

;Syntax Error. IDL attenpts to performa subtraction operation if
;the "-6" is not enclosed in parentheses.
A=5<-6

;Set all points in array ARR that are larger than 100 to 100.
ARR = ARR < 100

;Set X to the smallest of the three operands.
X = X0 < X1 < X2

The Maximum Operator

The “greater than” sign (>) isthe IDL maximum operator. “A > B” isequal to the
larger of A or B. For example:

"> is used to avoid taking the log of zero or negative nunbers.
C = ALOE D > 1E - 6)

; Plot positive points only. Negative points are plotted as zero.
PLOT, ARR > O

Matrix Multiplication

IDL has two operators used to multiply arrays and matrices.
The # Operator

The # operator computes array el ements by multiplying the columns of the first array
by the rows of the second array. The second array must have the same number of
columns as thefirst array has rows. The resulting array has the same number of
columns as the first array and the same number of rows as the second array.

Tip
If one or both of the arrays are also transposed, such as TRANSPOSE(A) #B, it is
more efficient to use the MATRIX_MULTIPLY function, which does the transpose
simultaneously with the multiplication.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 25

The ## Operator

The ## operator does what is commonly referred to as matrix multiplication. It
computes array elements by multiplying the rows of the first array by the columns of
the second array. The second array must have the same number of rows as the first
array has columns. The resulting array has the same number of rows asthefirst array
and the same number of columns as the second array.

For an exampleillustrating the difference between the two, see “Multiplying Arrays’
in Chapter 16 of the Using IDL manual.

Array Concatenation

The sguare brackets are used as array concatenation operators. Operands enclosed in
square brackets and separated by commas are concatenated to form larger arrays. The
expression [A, B] isan array formed by concatenating A and B, which can be
scalars or arrays, along the first dimension.

Similarly, [A, B, C] concatenates A, B, and C. The second and third dimensions can
be concatenated by nesting the bracket levels; [[1, 2], [3, 4]] isa2-element by
2-element array with thefirst row containing 1 and 2 and the second row containing 3
and 4. Operands must have compatible dimensions; all dimensions must be equal
except the dimension that is to be concatenated, e.g., [2, | NTARR(2, 2)] are
incompatible. Examples:

;Define C as three-point vector.
c=1[-1, 1, -1]

;Add 12 to the end of C
C=][C 12]

;Insert 12 at the beginning of C
CcC=1[12,

; Plot ARR2 appended to ARRL.
PLOT, [ARR1, ARR2?]

:Define a 3x3 matri x.
KER = [[1,2,1], [2,4,2], [1,2,1]]

Note

The maximum number of operands that can appear within brackets varies across
IDL implementations but is always at least 25. If you must create an array of more
than 25 elements using the concatenation operator, use multiple statements. For
example, to create an array with 70-constant elements, use the following
statements:

Building IDL Applications IDL Operators

26 Chapter 2: Expressions and Operators

A = [ko, kl, ey k24]
A = [A, k25, k26' ey k49]
A = [A, k50, k51, ey keg]

This method is relatively inefficient and should be performed only onceif possible.
Boolean Operators

There are four Boolean operatorsin IDL. Boolean operators return either “true” or
“false” as described previously. Note that the Boolean operators do not work with
string and complex arguments.

AND

AND isaBoolean operator that returns “true” whenever both of its operands are true;
otherwise, theresult is“false.” Any odd integer is considered true, and any even
integer is considered false. For integer, longword, and byte operands, a bitwise AND
operation is performed. For operations on other types, theresult isequal to the second
operand if thefirst operand is not equal to zero or the null string; otherwise, the result
is zero or the null string.

NOT

The NOT operator isthe Boolean inverse and is a unary operator (it has only one
operand). In other words, “NOT true” is equal to “false” and “NOT false” isequal to
“true.” NOT complements each bit for integer operands.

Note
Signed integers are expressed using the “2s complement” representation. This
means that to arrive at the decimal representation of a negative binary number (a
string of binary digits with a one as the most significant bit), you must take the
complement of each bit, add one, convert to decimal, and prepend a negative sign.
This meansthat NOT 0 equals-1, NOT 1 equals -2, etc.

For floating-point operands, the result is 1.0 if the operand is zero; otherwise, the
result is zero. The NOT operator is not valid for string or complex operands.

OR

OR isthe Boolean inclusive operator. For integer or byte operands, a bitwise
inclusive OR is performed. For example, 3 OR 5 equals 7. For floating-point

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 27
operands, the OR operator returns the first operand if it is non-zero, or the 2nd
operand otherwise.

XOR

XOR isthe Boolean “exclusive or” function. XOR isonly valid for byte, integer, and
longword operands. A bit in the result is set to 1 if the corresponding bitsin the
operands are different; if they are equal, it is set to zero.

The following table summarizes the action of the boolean operators:

Operator(op) TopT TopF FopF
AND T F F
OR T F
XOR F T F
opT opF
NOT T

Table 2-1: Action of Boolean Operators

When applied to bytes, integers, and longword operands, the Boolean functions
operate on each binary bit. For example:

Decimal Binary
3ANDS5=1 0011 AND 0101 = 0001
3 OR5=7 0011 OR 0101 =0111
3XOR5=6 0011 XOR 0101 = 0110

NOT 5=-6 NOT 0101 = 1010

Table 2-2: Action of Boolean Operators on Integers

Results of relational expressions can be combined into more complex expressions
using the Boolean operators. Some examples of relational and Boolean expressions
are asfollows:

;True if Ais between 25 and 50. If Ais an array, then the result
;is an array of zeros and ones.
(A LE 50) AND (A GE 25)

Building IDL Applications IDL Operators

28

Chapter 2: Expressions and Operators

;True if Ais less than 25 or greater than 50. This is the inverse

of the first.
(A GT 50) OR (A LT 25)

; Adds (using the | ogical AND operator) the hexadeci mal constant FF
; (255 in decimal) to the array ARR. This masks the | ower 8-bits and

;zeros the upper bits.
ARR AND ' FF' X

Relational Operators

The IDL relational operators can be used to test the relationship between two
arguments. The six relational operators are described in the following table:

Operator Description
EQ Equal to
NE Not equal to
GE Greater than or equal to
GT Greater than
LE Lessthan or equal to
LT Lessthan
Table 2-3: Relational Operators

Relational operators apply arelation to two operands and return alogical value of
true or false. Theresulting logical value can be used asthe predicate in IF, WHILE or
REPEAT statements can be combined using Boolean operators with other logical
values to make more complex expressions. For example: “1 EQ 1” istrue, and

“1GT 3" isfalse

Therulesfor evaluating relational expressions with operands of mixed modes are the
same as those given above for arithmetic expressions. For example, in the relational
expression “2 EQ 2.0”, the integer 2 is converted to floating point and compared to
the floating point 2.0. The result of this expression istrue, as represented by a byte 1.

InIDL, thevalue “true” is represented by the following:

* Any odd, nonzero value for byte, integer, and longword data types

IDL Operators

Building IDL Applications

Chapter 2: Expressions and Operators 29

« Any nonzero value for single, double-precision, and the real part of acomplex
number (the imaginary part isignored)

* Any non-null string

Conversely, falseis represented as anything that is not true—zero or even-valued
integers; zero-valued, floating-point quantities; and the null string.

The relational operators return avalue of 1 for true and O for false. The type of the
result is always byte.

EQ

EQ isthereational “equal to” operator. This operator returnstrue if its operands are
equal; otherwise, it returns false. This operator always returns a byte value of 1 for
true and a byte value of O for false.

NE

NE is the “not-equal-to” relational operator. This operator returns true whenever the
operands are different. For example” sun" NE "fun" returnstrue.

GE

GE isthe “greater than or equal to” relational operator. The GE operator returns true
if the operand on the left is greater than or equal to the one on the right. One use of
relational operatorsisto mask arrays as shown in the following statement:

A = ARRAY * (ARRAY GE 100)

This command sets A equal to ARRAY whenever the corresponding element of
ARRAY is greater than or equal to 100. If the element is less than 100, the
corresponding element of A is set to zero.

Strings are compared using the ASCI|I collating sequence: " " islessthan "0" isless
than "9" islessthan "A" islessthan "Z" isless than "a" which islessthan "z".

GT

GT isthe“greater than” relational operator. This operator returnstrue if the operand
on the left is greater than the operand on the right. For example, “6 GT 5" returns
true.

LE

LE isthe “less-than or equal-to” relational operator. This operator returnstrueif the
operand on the | eft isless than or equal to the operand on the right. For example, “4
LE 4” returns true.

Building IDL Applications IDL Operators

30

Chapter 2: Expressions and Operators

LT

LT isthe “less-than” relational operator. This operator returns true if the operand on
the left is less than the operand on the right. For example, “3 LT 4” returns true.

Using Relational Operators with Arrays

Relational operators can be applied to arrays, and the resulting array of ones and
zeroes can be used as an operand. For example, the expression, ARR * (ARR LE
100) isan array equal to ARR except that all points greater than 100 have been
reduced to zero. The expression (ARR LE 100) isan array that containsa 1 where
the corresponding element of ARR islessthan or equal to 100, and zero otherwise.
For example, to print the number of positive elementsin the array ARR:

PRI NT, TOTAL(ARR GT 0)
Using Relational Operators with Infinity and NaN Values

On Windows and Solaris x86 platforms, using relational operators with the values
infinity or NaN (Not a Number) causes an “illegal operand” error. The FINITE
function’s INFINITY and NAN keywords can be used to perform comparisons
involving infinity and NaN values. For more information, see FINITE in the IDL
Reference Guide and “ Special Floating-Point Values’ on page 428.

Conditional Expression

The conditional expression—uwritten with the ternary operator ?.—has the lowest
precedence of all the operators and is used wherever any other expression is used. It
provides an alternate way to write ssmple constructions of the IF... THEN...ELSE
statement. In the following example, z holds the greater value, a or b. Note that if
a=b, z holds b.

IF(aGrb) THENz =a ELSEz = b

Using a conditional expression, this statement can be simplified. Set z to the greater
of aand b, with z=b if a=h.

z=(aGrb) 2a:b
The genera form of this expression follows:
exprl ? expr2 : expr3

The expression exprl is evaluated first. If exprlistrue, then the expression expr2 is
evaluated and set as the value of the conditional expression. If exprlisfase, expr3is
evaluated and set as the value of the conditional expression. Either expr2 or expr3is
evaluated, based on the result of expril.

IDL Operators Building IDL Applications

Chapter 2: Expressions and Operators 31

Note
Since ?: has very low precedence—just above assignment—parentheses are not
necessary around the first expression expr1. Parentheses are advisable anyway to
distinguish the condition part of the expression.

For more information about the behavior of the ?: operator, see “ Definition of True
and False” on page 273.

Building IDL Applications IDL Operators

32 Chapter 2: Expressions and Operators
Operator Precedence

IDL operators are divided into the levels of algebraic precedence found in common
arithmetic. Operators with higher precedence are evaluated before those with lesser
precedence, and operators of equal precedence are evaluated from left to right.
Operators are grouped into five classes of precedence as shown in the following

table.
Priority Operator
First (highest) () (parentheses, to group expressions)
Second * (pointer dereference)

A (exponentiation)
Third * (multiplication)

and ## (matrix multiplication)

/ (division)
MOD (modulus)
Fourth + (addition)

- (subtraction and negation)

< (minimum)

> (maximum)

NOT (Boolean negation)
Fifth EQ (equality)

NE (not equal)

LE (lessthan or equal)
LT (lessthan)

GE (greater than or equal)
GT (greater than)

Table 2-4: Operator Precedence

Operator Precedence Building IDL Applications

Chapter 2: Expressions and Operators 33

Priority Operator
Sixth AND (Boolean AND)
OR (Boolean OR)
XOR (Boolean exclusive OR)
Seventh ?. (conditional expression)

Table 2-4: Operator Precedence

The effect of operatorsis based on precedence, not position. This concept is shown
by the following examples.
A=4+5*2

A isequal to 14 since the multiplication operator has a higher precedence than the
addition operator. Parentheses can be used to override the default evaluation.

A= (4+5) *2

In this case, A equals 18 because the expression inside the parentheses is eval uated
first.

A useful rule of thumb is, “when in doubt, parenthesize”. Some examples of
expressions are provided in the following table.

Expression Value

A+1 The sum of A and 1.

A<2+1 The smaller of A or two, plus one.

A<2*3 The smaller of A and six, since* has
higher precedence than <.

2* SQRT(A) Twice the square root of A.

A + Thursday' The concatenation of the strings A
and “Thursday.” An error resultsif
A isnot astring

Table 2-5: Examples of Expressions

Building IDL Applications Operator Precedence

34

Chapter 2: Expressions and Operators

Type and Structure of Expressions

Every entity in IDL has an associated type and structure. The twelve atomic data
types in decreasing order of precedence are as follows:

» Double-precision complex floating-point

» Complex floating-point

» Double-precision floating-point

* Floating-point

» Signed and unsigned 64-bit integer

e Signed and unsigned longword (32-bit) integer
e Signed and unsigned (16-bit) integer

* Byte

» String

The structure of an expression can be either a scalar or an array. The type and
structure of an expression depends on the type and structure of its operands. Unlike
many other languages, the type and structure of most expressionsin IDL cannot be
determined until the expression is evaluated. Because of this, care must be taken
when writing programs. For example, a variable can be a scalar byte variable at one
point in a program while at alater point it can be set to a complex array.

Expression Type

IDL attempts to eval uate expressions containing operands of different typesin the
most accurate manner possible. The result of an operation becomes the same type as
the operand with the greatest precedence or potential precision. For example, when
adding a byte variable to a floating-point variable, the byte variableisfirst converted
to floating-point, then added to the floating-point variable, yielding a floating-point
result. When adding a double-precision variable to a complex variable, the result is
double precision complex because the doubl e precision complex type has a higher
position in the hierarchy of datatypes.

Type and Structure of Expressions Building IDL Applications

Chapter 2: Expressions and Operators 35

Note
Signed and unsigned integers of a given width have the same precedence. In an
expression involving a combination of such types, the result is given the type of the
leftmost operand.

When writing expressions with mixed types, care must be taken to obtain the desired
results. For example, assume the variable A is an integer variable with avalue of 5.
The following expressions yield the indicated results:

;Integer division is performed. The remainder is discarded.
Al 2 =2

; The value of Ais first converted to floating.
Al 2. =25

;I nteger division is done first because of operator precedence.
;Result is floating point.
Al 2+ 1. = 3.

;Division is done in floating, then the 1 is converted to floating
;and added.
Al 2. +1 = 3.5

; Si gned and unsi gned i nt eger operands have t he sane precedence, so
;the | eft-nost operand deternmines the type of the result as signed
;i nteger.

A+ 5U =10

; As above, the |l eft-nost operand determines the result type
; between types with the same precedence
5U + 1 = 10U

Note

When other types are converted to complex type, the real part of the resultis
obtained from the original value and the imaginary part is set to zero.

When a string type appears as an operand with a numeric data type, the string is
converted to the type of the numeric term. For example: '123' + 123.0 is 246.0, while
'123.333' + 33 gives the result 156 because 123.333 isfirst converted to integer type.
In the same manner, 'ABC' + 123 a so causes a conversion efror.

Building IDL Applications Type and Structure of Expressions

36 Chapter 2: Expressions and Operators

Expression Structure

IDL expressions can contain operands with different structures, just as they can
contain operands with different types. Structure conversion is independent of type
conversion. An expression will yield an array result if any of its operandsis an array,
as shown in the following table:

Operands Result
Scalar : Scalar Scalar
Array : Array Array
Scalar : Array Array
Array : Scalar Array

Table 2-6: Structure of Expressions

Functions exist to create arrays of the datatypes IDL supports: BY TARR, INTARR,
UINTARR, LONARR, ULONARR, LON64ARR, ULON64ARR, FLTARR,
DCOMPLEXARR, DBLARR, COMPLEXARR, OBJARR, PTRARR, and
STRARR. The dimensions of the desired array are the parameters to these functions.
Theresult of FLTARR(5) is afloating-point array with one dimension, a vector, with
five elementsinitialized to zero. FLTARR(50,100) is atwo-dimensional array, a
matrix, with 50 columns and 100 rows.

The size of an array-valued expression is equal to the smaller of its array operands.
For example, adding a 50-point array to a 100-point array gives a 50-point array; the
last 50 points of the larger array are ignored. Array operations are performed point-
by-point, without regard to individual dimensions. An operation involving a scalar
and an array alwaysyields an array of identical dimensions. When two arrays of
equal size (number of elements) but different structure are operands, the result is of
the same structure as the first operand. For example:

;Yields fltarr(4).
FLTARR(4) + FLTARR(1, 4)

In the above example, arow vector is added to a column vector and arow vector is
obtained because the operands are the same size. This causes the result to take the
structure of the first operand. Here are some examples of expressionsinvolving
arrays.

;An array in which each el ement is equal to the sane el enent in ARR
;plus one. The result has the sane dinmensions as ARR If ARR s

Type and Structure of Expressions Building IDL Applications

Chapter 2: Expressions and Operators 37

;byte or integer, the result is of integer type; otherw se, the
;result is the sane type as ARR
ARR + 1

; An array obtained by summ ng two arrays.
ARR1 + ARR2

;An array in which each elenment is set to twice the smaller of
;either the corresponding el enent of ARR or 100.
(ARR < 100) * 2

;An array in which each elenent is equal to the exponential of the
;sane el ement of ARR divided by 10.
EXP(ARR/ 10.)

;An inefficient way of coding ARR * (3./MAX(ARR))
ARR * 3./ MAX(ARR)

In the last example, each point in ARR is multiplied by three, then divided by the
largest element of ARR. The MAX function returns the largest element of its array
argument. Thisway of writing the statement requires that each element of ARR be
operated on twice. If (3. / MAX(ARR)) isevaluated with one division and the result
then multiplied by each point in ARR, the process requires approximately half the
time.

Building IDL Applications Type and Structure of Expressions

38 Chapter 2: Expressions and Operators

Type and Structure of Expressions Building IDL Applications

Chapter 3:

Constants and
Variables

The following topics are covered in this chapter:

DataTypes........coviiiennnn... 40 Variables.............. 52
Constantsovuiiia... 43 SystemVariables 55
Type Conversion Functions 49 CommonBlocks 56

Building IDL Applications 39

40

Chapter 3: Constants and Variables

Data Types

The IDL language is dynamically typed. This means that an operation on avariable
can change that variable' stype. In general, when variables of different types are
combined in an expression, the result has the data type that yields the highest
precision.

For example, if an integer variable is added to afloating-point variable, the result will
be a floating-point variable.

Basic Data Types

Data Types

InIDL there are twelve basic, atomic data types, each with its own form of constant.
The data type assigned to avariable is determined either by the syntax used when
creating the variable, or as aresult of some operation that changes the type of the
variable.

IDL’s basic data types are discussed in more detail beginning with “Constants’ on
page 43.

» Byte: An 8-bit unsigned integer ranging in value from 0 to 255. Pixelsin
images are commonly represented as byte data.

* Integer: A 16-bit signed integer ranging from —32,768 to +32,767.
* Unsigned Integer: A 16-bit unsigned integer ranging from O to 65535.

e Long: A 32-hit signed integer ranging in value from approximately minus two
billion to plustwo billion.

» Unsigned Long: A 32-bit unsigned integer ranging in value from O to
approximately four billion.

e 64-hit Long: A 64-bit signed integer ranging in value from —
9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

* 64-hit Unsigned Long: A 64-bit unsigned integer ranging in value from O to
18,446,744,073,709,551,615.

* Foating-point: A 32-hit, single-precision, floating-point number in the range
of +10%8, with approximately six or seven decimal places of significance.

* Double-precision: A 64-bit, double-precision, floating-point number in the
range of £103% with approximately 14 decimal places of significance.

Building IDL Applications

Chapter 3: Constants and Variables 41

e Complex: A rea-imaginary pair of single-precision, floating-point numbers.
Complex numbers are useful for signal processing and frequency domain
filtering.

* Double-precision complex: A rea-imaginary pair of double-precision,
floating-point numbers.

Note
In previous versions of IDL prior to version 4, the combination of adouble-
precision number and a complex number in an expression resulted in asingle-
precision complex number because those versions of IDL lacked the DCOMPLEX
double-precision complex datatype. Starting with IDL version 4, this combination
resultsinaDCOMPLEX number.

e String: A sequence of characters, from 0 to 32,767 charactersin length, which
isinterpreted as text.

Precision of Floating-Point Numbers

The precision of IDL’s floating-point numbers depends somewhat on the platform
involved and the compiler and specific compiler switches used to compile the IDL
executable. The values shown here are minimum values; in some cases, IDL may
deliver slightly more precision than we have indicated. If your application uses
numbers that are sensitive to floating-point truncation or round-off errors, or values
that cannot be represented exactly as floating-point numbers, thisis something you
should consider.

For more information on floating-point mathematics, see Chapter 16, “Mathematics’
in the Using IDL manual. For information on your machine's precision, see
MACHAR in the IDL Reference Guide.

Complex Data Types

e Structures: Aggregations of data of various types. Structures are discussed in
Chapter 6, “ Structures’.

« Pointers: A reference to adynamically-allocated heap variable. Pointers are
discussed in Chapter 7, “Pointers”.

* Object References: A reference to a special heap variable that containsan IDL
object structure. Object references are discussed in Chapter 20, “ Object
Basics’.

Building IDL Applications Data Types

42

Chapter 3: Constants and Variables

Determining the Data Type of a Variable or Array

Data Types

The SIZE function can be used to determine the data type of avariable. See
“Determining the Size/Type of an Array” on page 382 for an example.

Building IDL Applications

Chapter 3: Constants and Variables

Constants

Integer Constants

Numeric constants of different types can be represented by a variety of forms. The

43

syntax used when creating integer constants is shown in the following table, where n
represents one or more digits.

Radix Type Form Examples

Decimal Byte nB 12B, 34B
Integer norns 12,125,425,425S
Unsigned Integer | nU or nUS 12U,12US
Long nL 121, 94L
Unsigned Long nuL 12UL, 94UL
64-bit Long nLL 12LL, 94LL
Unsigned 64-hit nULL 12ULL, 94ULL
Long

Hexadecimal Byte 'n'XB '2E'XB
I nteger n'xX 'OFX
Unsigned Integer | 'n'XU "OF XU
Long "n'XL 'FF'XL
Unsigned Long 'n"XUL "FF XUL
64-bit Integer 'n'XLL "FF XLL
Unsigned 64-bit 'n'’XULL 'FFXULL
I nteger

Table 3-1: Integer Constants
Building IDL Applications Constants

44 Chapter 3: Constants and Variables

Radix Type Form Examples
Octd Byte "nB "12B
Integer "n "12
'n'o ‘3770
Unsigned Integer | "nU "12U
'n'OU '377'0U
Long "nL "12L
n'CL 7777770l
Unsigned Long "nUL "12UL
'nNOUL TT777T7TOUL
64-bit Long "nLL "12LL
'n'OLL TT777T7TOLL
Unsigned 64-bit "nULL "12ULL
Long 'nNOULL T7777TOULL

Table 3-1: Integer Constants

Digitsin hexadecimal constants include the letters A through F for the decimal
numbers 10 through 15. Octal constant use the same style as hexadecimal constants,
substituting an O for the X. Absolute values of integer constants are given in the

following table.
Type Absolute Value Range

Byte 0-255

Integer 0-32767
Unsigned Integer 0 —65535
Long 0-2%1-1
Unsigned Long 0-2%2-1
64-bit Long 0-28_.1
Unsigned 64-bit Long 0-264.1

Table 3-2: Absolute Value Range Of Integer Constants
Constants Building IDL Applications

Chapter 3: Constants and Variables 45

Integers specified without one of the B, S, L, or LL specifiers are automatically
promoted to an integer type capable of holding them. For example, 40000 is
promoted to longword because it istoo large to fit in an integer. Any numeric
constant can be preceded by a plus (+) or minus (-) sign. The following table
illustrates examples of both valid and invalid IDL constants.

Unacceptable Reason Acceptable
2568 Too large, limit is 255 2558
'123L Missing apostrophe "123'L
'03G'x Invalid character "129
'27'L No radix '27'0L

650X L No apostrophes '650'X L
"129 9isaninvalid octal digit "124

Table 3-3: Examples of Integer Constants

Floating-Point and Double-Precision Constants
Foating-point and double-precision constants can be expressed in either

conventional or scientific notation. Any numeric constant that includes a decimal
point is afloating-point or double-precision constant.

Building IDL Applications Constants

46

Chapter 3: Constants and Variables

The syntax of floating-point and double-precision constantsis shown in the following
table. The notation “sx” represents the sign and magnitude of the exponent, for
example, E- 2.

Form Example

n. 102.

.n 102

n.n 10.2

nEsx 10E5

n.Esx 10.E-3
.NESx JAE+12
Nn.NESX 2.3E12

Table 3-4: Syntax of Floating-Point Constants

Double-precision constants are entered in the same manner, replacing the E with aD.
For example, 1. 0DO, 1D, and 1. D each represent a double-precision numeral 1.

Complex Constants

Complex constants contain areal and an imaginary part, both of which are single- or
double-precision floating-point numbers. The imaginary part can be omitted, in
which case it is assumed to be zero. The form of acomplex constant is as follows:

COVPLEX(REAL_PART, | MAG NARY_PART)
or
COVPLEX(REAL_PART)

For example, COMPLEX(1,2) isacomplex constant with areal part of one, and an
imaginary part of two. COMPLEX(1) isacomplex constant with areal part of one
and a zero imaginary component. To extract the real part of a complex expression,
use the FLOAT function. The ABS function returns the magnitude of a complex
expression, and the IMAGINARY function returns the imaginary part.

String Constants

Constants

A string constant consists of zero or more characters enclosed by apostrophes (') or
guotes ("). The value of the constant is simply the characters appearing between the

Building IDL Applications

Chapter 3: Constants and Variables

47

leading delimiter (' or "") and the next occurrence of the same delimiter. A double
apostrophe (" ') or quote (" ") is considered to be the null string; a string containing
no characters. An apostrophe or quote can be represented within a string by two
apostrophes or quotes; e.g., 'Don"t' returns Don't. This syntax often can be avoided by
using a different delimiter; e.g., "Don't" instead of 'Don"t'. The following table
illustrates valid string constants.

Expression Resulting String

'Hi there Hi there

"Hi there" Hi there

" Null String

“I'm happy" I'm happy

'I"'m happy’ I”’m happy

‘counter’ counter

'129 129

Table 3-5: Examples of Valid String Constants

The following tableillustrates invalid string constants. In the last entry of the table,
"129" isinterpreted as an illegal octal constant. Thisis because a quote character
followed by adigit from O to 7 represents an octal numeric constant, not a string, and
the character 9 isanillegal octal digit.

String Value Unacceptable Reason
Hi there 'Hi there" Mismatched delimiters
Null String ' Missing delimiter
I’m happy 'I'm happy" Apostrophe in string
counter "counter” Double apostropheis null string
129 "129" Illegal octal constant

Table 3-6: Examples of Invalid String Constants

Building IDL Applications

Constants

48

Chapter 3: Constants and Variables

Note

While an IDL string variable can hold up to 64 Kbytes of information, the buffer

than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine

them with the “+” operator:

var = var l+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

Representing Non-Printable Characters

The ASCII characters with value less than 32 or greater than 126 do not have
printable representations. Such characters can be included in string constants by
specifying their ASCII value as a byte argument to the STRING function. The
following table gives examples of using octal or hexadecimal character notation.

Specified String

Actual Contents

Comment

STRING(27B)+;H'
+STRING(27B)+[2J

'<Esc>[;H<Esc>[2J

Erase ANSI termind

STRING(7B)

Bell

Ring the bell

STRING(8B)

Backspace

Move cursor |eft

Table 3-7: Specifying Non-Printable Characters

Note that ASCII characters may have different effects (or no effect) on platforms that
do not support ASCII terminal commands.

Constants

Building IDL Applications

Chapter 3: Constants and Variables 49
Type Conversion Functions

IDL alows you to convert data from one data type to another using a set of
conversion functions. These functions are useful when you need to force the
evaluation of an expression to a certain type, output datain a mode compatible with
other programs, etc. The conversion functions are in the following table

Function Description
STRING Convert to string
BYTE Convert to byte
FIX Convert to 16-bit integer, or optionally other type
UINT Convert to 16-bit unsigned integer
LONG Convert to 32-bit integer
ULONG Convert to 32-hit unsigned integer
LONG64 Convert to 64-hit integer
ULONG64 Convert to 64-bit unsigned integer
FLOAT Convert to floating-point
DOUBLE Convert to double-precision floating-point
COMPLEX Convert to complex value
DCOMPLEX Convert to double-precision complex value

Table 3-8: Type Conversion Functions

Conversion functions operate on data of any structure: scalars, vectors, or arrays, and
variables can be of any type.

Take Care When Converting Types

If the variable you are converting lies outside the range of the type to which you are
converting, IDL will truncate the binary representation of the value without
informing you. For example:

Define A. Note that the value of Ais outside the range
; of integers, and is automatically created as a | ongword
i nteger by |DL.
A = 33000

Building IDL Applications Type Conversion Functions

50

Chapter 3: Constants and Variables

;Bis silently truncated.
B = FIX(A)
PRI NT, B

IDL prints:
- 32536

Applying FIX creates a short (16-bit) integer. If the value of the variable passed to
FIX lies outside the range of 16-bit integers, IDL will silently truncate the binary
value, returning only the 16 least-significant bits, with no indication that an error has
occurred.

With most floating-point operations, error conditions can be monitored using the
FINITE and CHECK_MATH functions. See Chapter 17, “ Controlling Errors’, for
more information.

Converting Strings

When converting from astring argument, it is possible that the string does not contain
avalid number and no conversion is possible. The default action in such casesisto
print awarning message and return zero. The ON_IOERROR procedure can be used
to establish a statement to be jumped to in case of such errors.

Conversion between strings and byte arrays (or vice versa) is something of a special
case. Theresult of the BY TE function applied to astring or string array isabyte array
containing the ASCII codes of the characters of the string. Converting a byte array
withthe STRING function yields astring array or scalar with one less dimension than
the byte array.

Dynamic Type Conversion

The TY PE keyword to the FIX function allowstype conversion to an arbitrary type at
runtime without the use of CASE or IF statements on each type. The following
example demonstrates the use of the TY PE keyword:

PRO EXAMPLE_FI XTYPE
Define a variable as a doubl e:
A = 3D

; Store the type of Ain a variable:
typeA = SI ZE(A, /TYPE)
PRINT, 'Ais type code', typeA

Prompt the user for a nuneric val ue:
READ, UserVal, PROWPT='Enter any Nuneric Value: '

Type Conversion Functions Building IDL Applications

Chapter 3: Constants and Variables

; Convert the user value to the type stored in typeA:

ConvUser Val = FI X(User Val,

PRI NT, ConvUser Val
END

Examples of Type Conversion

TYPE=t ypeA)

See the following table for examples of type conversions and their results.

Operation Results
FLOAT(1) 1.0
FIX(1.3+1.7) 3
FIX(1.3) + FIX(1.7) 2
FIX(1.3, TYPE=5) 1.3000000
BYTE(1.2) 1
BYTE(-1) 255b (Bytes are modul o 256)
BYTE(01ABC') [48b, 49b, 65b, 66b, 67b]
STRING([65B, 66B, 67B]) 'ABC’
FLOAT(COMPLEX(1, 2)) 1.0

COMPLEX([1, 2], [4, 5])

[COMPLEX(1,4),COMPLEX(2,5)]

Table 3-9: Uses of Type Conversion Functions

Building IDL Applications

51

Type Conversion Functions

52

Chapter 3: Constants and Variables

Variables

Variables are named repositories where information is stored. A variable can have
virtually any size and can contain any of the IDL datatypes. Variables can be used to
store images, spectra, single quantities, names, tables, etc.

Attributes of Variables

Variables

Every variable has a number of attributes that can change during the execution of a
program or terminal session. Variables have both a structure and a type.

Structure

A variable can contain asingle value (a scalar) or a number of values of the same
type (an array) or data entities of potentially differing type and size (a structure).
Strings are considered as single values, and a string array contains a number of
variable-length strings.

In addition, a variable can associate an array structure with afile; these variables are
called associated variables. Referencing an associated variable causes data to be read
from, or written to, the file. Associated variables are described in ASSOC in the IDL
Reference Guide.

Type

A variable can have one and only one of the following types: undefined, byte, integer,
unsigned integer, 32-bit longword, unsigned 32-bit longword, 64-bit integer,
unsigned 64-bit integer, floating-point, double-precision floating-point, complex
floating-point, double-precision complex floating-point, string, structure, pointer, or
object reference.

When a variable appears on the |eft-hand side of an assignment statement, its
attributes are copied from those of the expression on the right-hand side. For
example, the statement

ABC = DEF

redefines or initializes the variable ABC with the attributes and value of variable
DEF. Attributes previously assigned to the variable are destroyed. Initially, every
variable has the single attribute of undefined. Attempts to use the value of an
undefined variables result in an error.

Building IDL Applications

Chapter 3: Constants and Variables

Variable Names

53

IDL variables are named by identifiers. Each identifier must begin with aletter and
can contain from 1 to 128 characters. The second and subsequent characters can be
letters, digits, the underscore character, or the dollar sign. A variable name cannot
contain embedded spaces, because spaces are considered to be delimiters. Characters
after thefirst 128 are ignored. Names are case insensitive. Lowercase |etters are
converted to uppercase; so the variable name abc is equivalent to the name ABC. The
following table illustrates some acceptable and unacceptable variable names.

Unacceptable Reason Acceptable
EOF Conflicts with function name | A

6A Does not start with letter A6

_INIT Does not start with letter INIT_STATE
AB@ Illegal character ABCS$DEF
abcd Embedded space My _variable

Table 3-10: Unacceptable and Acceptable IDL Variable Names

Warning

A variable cannot have the same name as a function (either built-in or user-defined)
or areserved word (see the following list). Giving a variable such a name resultsin
asyntax error or in “hiding” the variable.

The following table lists all of the reserved wordsin IDL.

AND

CASE
CONTINUE
END
ENDFOR
ENDSWITCH
FOR

GE

Building IDL Applications

BEGIN

COMMON

DO

ENDCASE

ENDIF

ENDWHILE
FORWARD_FUNCTION
GOTO

BREAK
COMPILE_OPT
ELSE
ENDELSE
ENDREP

EQ

FUNCTION

GT

Variables

54

Variables

IF

LT

NOT

OR
SWITCH
WHILE

INHERITS
MOD

OF

PRO
THEN
XOR

Chapter 3: Constants and Variables

LE

NE
ON_IOERROR
REPEAT
UNTIL

Building IDL Applications

Chapter 3: Constants and Variables 55
System Variables

System variables are a special class of predefined variables available to all program
units. Their names always begin with the exclamation mark character (!). System
variables are used to set the options for plotting, to set various internal modes, to
return error status, etc.

System variables have a predefined type and structure that cannot be changed. When
an expression is stored into a system variable, it is converted to the variable type, if
necessary and possible. Certain system variables are read only, and their values
cannot be changed. The user can define new system variables with the DEFSY SV
procedure.

System variables are discussed in Appendix D, “System Variables” in the IDL
Reference Guide.

Building IDL Applications System Variables

56 Chapter 3: Constants and Variables

Common Blocks

Common blocks are useful when there are variables that need to be accessed by
severa IDL procedures or when the value of avariable within a procedure must be
preserved across calls. Once a common block has been defined, any program unit
referencing that common block can access variablesin the block as though they were
local variables. Variablesin a common statement have a global scope within
procedures defining the same common block. Unlike local variables, variablesin
common blocks are not destroyed when a procedure is exited.

There are two types of common block statements: definition statements and reference
statements.

Common Block Definition Statements

The common block definition statement creates acommon block with the designated
name and places the variables whose names follow into that block. Variables defined
in acommon block can be referenced by any program unit that declares that common
block. The general form of the COMMON block definition statement is as follows:

COWDON Bl ock_Nane, Variable;, Variable,, ..., Variable,

The number of variables appearing in the common block definition statement
determines the size of the common block. The first program unit (main program,
function, or procedure) defining the common block sets the size of the common
block, which can never be expanded. Other program units can reference the common
block with any number of variables up to the number originally specified. Different
program units can give the variables different names, as shown in the example below.

Common blocks share the same space for all procedures. In IDL, common block
variables are matched variable to variable, unlike FORTRAN, where storage
locations are matched. The third variable in agiven IDL common block will aways
be the same asthe third variable in all declarations of the common block regardless of
the size, type, or structure of the preceding variables.

Note that common blocks must appear before any of the variables they define are
referenced in the procedure.

Variables in common blocks can be of any type and can be used in the same manner
as normal variables. Variables appearing as parameters cannot be used in common
blocks. There are no restrictions on the number of common blocks used, although
each common block uses dynamic memory.

Common Blocks Building IDL Applications

Chapter 3: Constants and Variables 57

Example

The two proceduresin the following example show how variables defined in
common blocks are shared.

PRO ADD, A
COWDN SHAREL, X, Y, Z, Q R
A=X+Y+Z+Q+R
PRINT, X, Y, Z Q R A
RETURN

END

PRO SUB, T
COWON SHAREL, A, B, C D
T=A-B-C-D
PRINT, A, B, C D T
RETURN

END

Thevariables X, Y, Z, and Q in the procedure ADD are the same as the variables A,
B, C, and D, respectively, in procedure SUB. The variable R in ADD isnot used in
SUB. If the procedure SUB were to be compiled before the procedure ADD, an error
would occur when the COMMON definition in ADD was compiled. Thisis because
SUB has aready declared the size of the common block, SHARE1, which cannot be
extended.

Common Block Reference Statements

The common block reference statement duplicates the common block and variable
names from a previous definition. The common block need only be defined in the
first routine to be compiled that references the block.

Example

The two procedures in the following example share the common block SHARE?2 and
al itsvariables.

PRO MULT, M
COWVON SHARE2, E, F, G
M=E*F*G
PRINT, M E F, G
RETURN

END

PRO DV, D
COVMMON SHARE2
D=E/ F
PRINT, D, E, F, G

Building IDL Applications Common Blocks

58 Chapter 3: Constants and Variables

RETURN
END

The MULT procedure uses a common block definition statement to define the block
SHARE2. The DIV procedure then uses acommon block reference statement to gain
access to all the variables defined in SHARE2. (Note that MULT must be defined
before DIV in order for the common block reference to succeed.)

Common Blocks Building IDL Applications

Chapter 4:

Strings

The following topics are covered in this chapter:

OVEIVIEW . .o 60
String Operations 61
Non-string and Non-scalar Arguments 62
String Concatenation 63
Using STRING to Format Data 64
Byte Argumentsand Strings 65
CaseFolding 67

Building IDL Applications

Whitespace o 68
Finding the Lengthof aString 70
SUDSLIINGS . . oo 71
Splitting and Joining Strings 74
Comparing Stringsoovienn.. 75
Learning About Regular Expressions 79

59

60

Chapter 4: Strings

Overview

An IDL string is asequence of characters from O to 32,767 charactersin length.
Strings have dynamic length (they grow or shrink to fit), and there is no need to
declare the maximum length of astring prior to using it. Aswith any datatype, string
arrays can be created to hold more than asingle string. In this case, the length of each
individual string in the array depends only onits own length and is not affected by the
lengths of the other string elements.

A Note About the Examples

Overview

In some of the examplesin this chapter, it is assumed that a string array named
TREES exists. TREES contains the names of seven trees, one name per element, and
is created using the statement:

trees = ['Beech', 'Birch', 'Mahogany', 'Mple', 'Cak', $
"Pine', 'WAl nut']

Executing the statement,
PRINT, "> + trees + '<'
results in the following output:

>Beech< >Birch< >Mahogany< >Maple< >0ak< >Pine< >Wlnut<

Building IDL Applications

Chapter 4: Strings 61
String Operations

IDL supports several basic string operations, as described bel ow.
Concatenation

The Addition operator, “+”, can be used to concatenate strings together.
Formatting Data

The STRING function isused to format datainto astring. The READS procedure can
be used to read values from a string into IDL variables.

Case Folding

The STRLOWCASE function returns a copy of its string argument converted to
lowercase. Similarly, the STRUPCA SE function converts its argument to uppercase.

White Space Removal

The STRCOMPRESS and STRTRIM functions can be used to eliminate unwanted
white space (blanks or tabs) from their string arguments.

Length
The STRLEN function returns the length of its string argument.
Substrings

The STRPOS, STRPUT, and STRMID routines locate, insert, and extract substrings
from their string arguments.

Splitting and Joining Strings

The STRSPLIT function is used to break strings apart, and the STRJOIN function
can be used to and glue strings together.

Comparing Strings

The STRCMP, STRMATCH, and STREGEX functions perform string comparisons.

Building IDL Applications String Operations

62 Chapter 4: Strings

Non-string and Non-scalar Arguments

Most of the string processing routines described in this chapter expect at least one
argument that is the string on which they act.

If the argument is not of type string, IDL converts it to type string using the same
default formatting rules that are used by the PRINT/PRINTF or STRING routines.
The function then operates on the converted result. Thus, the IDL statement,

PRI NT, STRLEN(23)
returns the result
8

because the argument “23” isfirst converted to the string ' 23' that happensto
be a string of length 8.

If the argument isan array instead of ascalar, the function returns an array result with
the same structure as the argument. Each element of the result corresponds to an
element of the argument. For example, the following statements:

; Get an uppercase version of TREES.
A = STRUPCASE(tr ees)

; Show that the result is also an array.
HELP, A

;Display the original.
PRI NT, trees

;Display the result.
PRI NT, A

produce the following output:

A STRI NG = Array(7)
Beech Birch Mahogany Mapl e Cak Pine WAl nut
BEECH Bl RCH MAHOGANY MAPLE OAK PI NE WALNUT

For more details on how individual routines handle their arguments, see the
individual descriptionsin the IDL Reference Guide.

Non-string and Non-scalar Arguments Building IDL Applications

Chapter 4: Strings 63
String Concatenation

The addition operator is used to concatenate strings. For example, the command:

A ="'This is'" + ' a concatenation exanple.'
PRI NT, A

resultsin the following output:
This is a concatenation exanpl e.

Thefollowing IDL statements build ascalar string containing a comma-separated list
of the names found in the TREES string array:

; Use REPLI CATE to nake an array with the correct nunber of conmas

;and add it to trees.
names = trees + [REPLICATE(',', N_ELEMENTS(trees)-1), '']

; Show the resulting list.
PRI NT, names

Running the above statements results in the following output:

Beech, Birch, Mahogany, Maple, Oak, Pine, Wl nut

Building IDL Applications String Concatenation

64 Chapter 4: Strings
Using STRING to Format Data

The STRING function has the following form:
S = STRING(Expressiony, ..., Expression,)

It convertsits parameters to characters, returning the result asastring expression. Itis
identical in function to the PRINT procedure, except that its output is placed into a
string rather than being output to the terminal. Aswith PRINT, the FORMAT
keyword can be used to explicitly specify the desired format. See the discussions of
freeformat and explicitly formatted input/output (“ Free Format 1/0” on page 153) for
details of dataformatting. For more information on the STRING function, see
STRING inthe IDL Reference Guide.

Asasimple example, the following IDL statements:

; Produce a string array.
A = STRI NG FORMAT=' ("The values are:", /, (1))', INDGEN(5))

; Show its structure.
HELP, A

cPrint the result.
FOR1 = 0, 4 DO PRINT, A[l]

produce the following output:

A STRING = Array(6)
The val ues are:

0

1

2

3

Reading Data from Strings

The READS procedure performs formatted input from a string variable and writes
the results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

Thisroutine is useful when you need to examine the format of a data file before
reading the information it contains. Each line of thefile can be read into a string using
READF. Then the components of that line can be read into variables using READS.

See the description of READS in the IDL Reference Guide for more details.

Using STRING to Format Data Building IDL Applications

Chapter 4: Strings 65
Byte Arguments and Strings

Thereis aclose association between a string and a byte array—a string is smply an
array of bytesthat istreated as a series of ASCII characters. Therefore, itis
convenient to be able to convert between them easily.

When STRING is called with a single argument of byte type and the FORMAT
keyword is not used, STRING does not work in its normal fashion. Instead of
formatting the byte data and placing it into a string, it returns a string containing the
byte values from the original argument. Thus, the result has one less dimension than
the original argument. A two-dimensional byte array becomes a vector of strings, and
a byte vector becomes a scalar string. However, a byte scalar also becomes a string
scalar. For example, the statement

PRI NT, STRING([72B, 101B, 108B, 108B, 111B])
produces the output below:
Hel l o

This output results because the argument to STRING, as produced by the array
concatenation operator, is a byte vector. Itsfirst element is 72B which is the ASCII
codefor “H,” the second is 101B whichisan ASCII “e” and so forth. The PRINT
keyword can be used to disable this feature and cause STRING to treat byte datain
the usual way.

Asdiscussed in Chapter 8, “Files and Input/Output”, it is easier to read fixed-length
string data from binary files into byte variables instead of string variables. Therefore,
it is convenient to read the data into a byte array and use this special behavior of
STRING to convert the data into string form.

Another use for this feature is to build strings that contain nonprintable charactersin
away such that the character is not entered directly. Thisresultsin programsthat are
easier to read and that also avoid file transfer difficulties (some forms of file transfer
have problems transferring nonprintable characters). Due to the way in which strings
areimplemented in IDL, applying the STRING function to a byte array containing a
null (zero) value will result in the resulting string being truncated at that position.
Thus, the statement,

PRI NT, STRI NG([65B, 66B, 0B, 67B])
produces the following outpult:
AB

Building IDL Applications Byte Arguments and Strings

66 Chapter 4: Strings

This output is produced because the null byte in the third position of the byte array
argument terminates the string and hides the last character.

Note
The BY TE function, when called with a single argument of type string, performs
the inverse operation to that described above, resulting in a byte array containing
the same byte values as its string argument. For additional information about the
BY TE function, see “Type Conversion Functions’ on page 49.

Byte Arguments and Strings Building IDL Applications

Chapter 4: Strings 67
Case Folding

The and STRUPCA SE functions are used to convert arguments to lowercase or
uppercase. They have the form:

S = STRLOWCASE(String)
S = STRUPCA SE(Sring)
where String is the string to be converted to lowercase or uppercase.

Thefollowing IDL statements generate atable of the contents of TREES showing
each namein its actual case, lowercase and uppercase:

FOR 1=0, 6 DO PRINT, trees[l], STRLOACASE(trees[I]),$
STRUPCASE(trees[1]), FORMAT = ' (A, T15, A T30, A’

The resulting output from running this statement is as follows:

Beech beech BEECH

Birch birch BIRCH
Mahogany mahogany MAHOGANY
Maple maple MAPLE

Oak oak OAK

Pine pine PINE

Walnut wal nut WALNUT

A common use for case folding occurs when writing IDL procedures that require
input from the user. By folding the case of the responsg, it is possible to handle
responses written in uppercase, lowercase, or mixed case. For example, the following
IDL statements can be used to ask “yesor no” style questions.

;Create a string variable to hold the response.
answer = ''

; Ask the question.

READ, ' Answer yes or no: ', answer

| F (STRUPCASE(answer) EQ 'YES') THEN $
; Conpare the response to the expected answer.
PRI NT, ' YES' ELSE PRI NT, ' NO

Building IDL Applications Case Folding

68 Chapter 4: Strings

Whitespace

The STRCOMPRESS and STRTRIM functions are used to remove unwanted white
space (tabs and spaces) from a string. This can be useful when reading string data
from arbitrarily formatted strings.

Removing All Whitespace
The function STRCOMPRESS returns a copy of its string argument with all white
space replaced with a single space or completely removed. It has the form:
S = STRCOMPRESS(Sring)
where String is the string to be compressed.

The default action is to replace each section of white space with a single space.
Setting the REMOVE_ALL keyword causes white space to be completely
eliminated. For example,

;Create a string with undesirable white space. Such a string m ght
;be the result of reading user input with a READ statenent.
A=" Thi s is a poorly spaced sentence.

;Print the result of shrinking all white space to a single blank.
PRI NT, '>', STRCOVPRESS(A), '<'

;Print the result of renmpbving all white space.
PRI NT '>', STRCOWRESS(A, /REMOVE ALL), '<'

results in the outpuit:

> This is a poorly spaced sentence. <
>Thi si sapoor | yspacedsent ence. <

Removing Leading or Trailing Blanks

The function STRTRIM returns a copy of its string argument with leading and/or
trailing white space removed. It has the form:

S=STRTRIM(String[, Flag])

where Sring is the string to be trimmed and Flag is an integer that indicates the
specific trimming to be done. If Flag is O or is not present, trailing white spaceis
removed. If it is 1, leading white space is removed. Both trailing and leading white
space are removed if Flag isequal to 2. For example:

Whitespace Building IDL Applications

Chapter 4: Strings 69

;Create a string with unwanted | eading and trailing bl anks.
A ="' This string has | eading and trailing white space

; Renove trailing white space.
PRINT, '>', STRTRIMA), '<'

; Renove | eadi ng white space.
PRINT, '>', STRTRRMA 1), '<

: Renove bot h.
PRINT, '>', STRTRIMA 2), '<

Executing these statements produces the output bel ow.

> This string has leading and trailing white space<
>This string has | eading and trailing white space <
>This string has |eading and trailing white space<

Removing All Types of Whitespace

When processing string data, STRCOMPRESS and STRTRIM can be combined to
remove leading and trailing white space and shrink any white space in the middle
down to single spaces.

;Create a string with undesirable white space.
A= 'Yet another poorly spaced sent ence.

; El'i m nate unwanted white space.
PRI NT, '>'" STRCOVWPRESS(STRTRIMA 2)), ‘<

Executing these statements gives the result below:

>Yet anot her poorly spaced sentence. <

Building IDL Applications Whitespace

70 Chapter 4: Strings
Finding the Length of a String

The STRLEN function is used to obtain the length of a string. It has the form:
L = STRLEN(String)

where Sring isthe string for which the length isrequired. For example, the following
statement

PRI NT, STRLEN(' This sentence has 31 characters')
resultsin the output
31

whilethefollowing IDL statement prints the lengths of all the names contained in the
array TREES.

PRI NT, STRLEN(trees)
The resulting output is as follows:

5 5 8 5 3 4 6

Finding the Length of a String Building IDL Applications

Chapter 4: Strings

Substrings

71

IDL provides the STRPOS, STRPUT, and STRMID routines to locate, insert, and

extract substrings from their string arguments.

Searching for a Substring

The STRPOS function is used to search for the first occurrence of a substring. It has

the form
S = STRPOS(Object, Search_string[, Position])

where Object isthe string to be searched, Search_string is the substring to search for,
and Position is the character position (starting with position 0) at which the searchis
begun. If the optional argument Position is omitted, the search is started at the first
character (character position 0). The following IDL procedure counts the number of
times that the word “dog” appears in the string “dog cat duck rabbit dog cat dog”:

PRO Ani nal s

; The search string, "dog", appears three tines.
animals = 'dog cat duck rabbit dog cat dog'

;Start searching in character position O.
I =0

; Nunber of occurrences found.
cnt =0

:Search for an occurrence.
VWH LE (I NE -1) DO BEG N
| = STRPCS(ani nmals, 'dog', I)

IF (I NE -1) THEN BEG N
; Updat e counter.
cnt = cnt + 1

;lncrement | so as not to count the sane instance of
;twice.
I =1 + 1

ENDI F
ENDWHI LE

Print the result.

PRINT, 'Found ', cnt, " occurrences of 'dog" "
END

Building IDL Applications

1 dogv

Substrings

72 Chapter 4: Strings

Running the above program produces the result below.

Found 3 occurrences of 'dog'

Searching For the Last Occurrence of a Substring

The REVERSE_SEARCH keyword to the STRPOS function makes it easy to find
the last occurrence of a substring within astring. In the following example, we search
for the last occurrence of the letter “1” (or “i”) in a sentence:

sentence = '"IDL is fun.'

sent ence = STRUPCASE(sent ence)

lasti = STRPOS(sentence, 'I|', /REVERSE_SEARCH)
PRI NT, |asti

Thisresultsin:
4

Note that although REVERSE_SEARCH tells STRPOS to begin searching from the
end of the string, the STRPOS function still returns the position of the search string
starting from the beginning of the string (where O is the position of the first
character).

Inserting the Contents of One String into Another

The STRPUT procedureis used to insert the contents of one string into another. It has
the form,

STRPUT, Destination, Source], Position]

where Destination is the string to be overwritten, Source is the string to be inserted,
and Position isthefirst character position within Destination at which Source will be
inserted. If the optional argument Position is omitted, the overwrite is started at the
first character (character position 0). Thefollowing IDL statements use STRPOS and
STRPUT to replace every occurrence of the word “dog” with the word “CAT” in the
string “dog cat duck rabbit dog cat dog”:

animals = 'dog cat duck rabbit dog cat dog'
; The string to search, "dog", appears three tines.

;Whil e any occurrence of "dog" exists, replace it.
WHI LE (((! = STRPCS(aninals, 'dog'))) NE -1) DO $
STRPUT, animals, 'CAT', |

; Show the resulting string.
PRI NT, ani mal s

Substrings Building IDL Applications

Chapter 4: Strings 73

Running the above statements produces the result below.
CAT cat duck rabbit CAT cat CAT

Extracting Substrings

The STRMID function isused for extracting substrings from alarger string. It hasthe
form:

STRMID(Expression, First_Character [, Length])

where Expression is the string from which the substring will be extracted,
First_Character isthe starting position within Expression of the substring (the first
position is position 0), and Length isthe length of the substring to extract. If there are
not Length characters following the position First_Character, the substring will be
truncated. If the Length argument is not supplied, STRMID extracts all characters
from the specified starting position to the end of the string. The following IDL
statements use STRMID to print a table matching the number of each month with its
three-letter abbreviation:

;String containing all the nonth nanes.
nmont hs = ' JANFEBMARAPRMAYJ UNJ ULAUGSEPCCTNOVDEC

; Extract each name in turn. The equation (I1-1)*3 cal cul ates the
;position within MONTH for each abbreviation

FORI =1, 12 DO PRINT, I, ' ", $

STRM D(nonths, (I - 1) * 3, 3)

The result of executing these statements is as follows:

JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
10 oCcT
11 NOV
12 DEC

OO ~NOOULDA WNPE

Building IDL Applications Substrings

74 Chapter 4: Strings
Splitting and Joining Strings

The STRSPLIT function is used to break apart astring, and the STRJOIN functionis
used to glue together separate strings into asingle string.

The STRSPLIT function uses the following syntax:
Result = STRSPLIT(String [, Pattern])

where String is the string to be split, and Pattern is either a string of character codes
used to specify the delimiter, or aregular expression, as implemented by the
STREGEX function.

The STRJOIN function uses the following syntax:
Result = STRIOIN(String [, Delimiter])

where Sring isthe string or string array to be joined, and Delimiter isthe separator
string to use between the joined strings.

The following example uses STRSPLIT to extract words from a sentence into an
array, modifies the array, and uses STRJOIN to rejoin the individual array elements
into a new sentence:

strl = '"Hello Cruel World'

words = STRSPLI T(str1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]
PRI NT, STRJO N(newwords, ' ')

This code results in the following output:
Hello Wrld

In this example, the EXTRACT keyword caused STRSPLIT to return the substrings
as array elements, rather than the default action of returning an array of character
offsets indicating the position of each substring.

The STRJOIN function allows us to specify the delimiter used to join the strings.
Instead of using a space asin the above example, we could use adifferent delimiter as
follows:

strl = "Hello Cruel Wrld'

words = STRSPLIT(strl1, ' ', /EXTRACT)
newwor ds=[wor ds[0] , wor ds[2]]

PRI NT, STRJO N(newwords, ' Kind ")

This code results in the following output:
Hello Kind Wrld

Splitting and Joining Strings Building IDL Applications

Chapter 4: Strings 75
Comparing Strings

IDL provides several different mechanisms for performing string comparisons. In
addition to the EQ operator, the STRCMP, STRMATCH, and STREGEX functions
can all be used for string comparisons.

Case-Insensitive Comparisons of the First N Characters

The STRCMP function simplifies case-insensitive comparisons, and comparisons of
only thefirst N characters of two strings. The STRCMP function uses the following
syntax:

Result = STRCMP(Stringl, String2 [, N])

where Sringl and Sring2 are the strings to be compared, and N is the number of
characters from the beginning of the string to compare.

Using the EQ operator to compare the first 3 characters of the strings “Moose” and
“mOQ” requiresthe following steps:

A
B

' Mbose'
' moO0

C=STRM D(A, 0, 3)

I F (STRLOMCASE(C) EQ STRLOAMCASE(B)) THEN PRINT, "It's a match!"

Using the EQ operator for this case-insensitive comparison of the first 3 characters
requires the STRMID function to extract the first 3 characters, and the
STRLOWCASE (or STRUPCA SE) function to change the case.

The STRCMP function could be used to simplify this comparison:

A=' Mbose'
B=' n0OO

I F (STRCMP(A B, 3, /FOLD CASE) EQ 1) THEN PRINT, "It's a match!"

The optional N argument of the STRCMP function allows us to easily specify how
many characters to compare (from the beginning of the input strings), and the
FOLD_CASE keyword specifies a case-insensitive search. If N is omitted, the full
strings are compared.

Building IDL Applications Comparing Strings

76 Chapter 4: Strings

String Comparisons Using Wildcards

The STRMATCH function can be used to compare a search string containing
wildcard characters to another string. It is similar in function to the way the standard
UNIX command shell processes file wildcard characters.

The STRMATCH function uses the following syntax:
Result = STRMATCH(Sring, SearchString)
where String is the string in which to search for SearchString.

SearchString can contain the following wildcard characters:

Wildcard

Character Description
* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of

characters separated by "-" matches any character lexically
between the pair, inclusive. If thefirst character following the
opening [isa!, any character not enclosed is matched. To
prevent one of these characters from acting as awildcard, it
can be quoted by preceding it with a backslash character (e.g.
"*" matches the asterisk character). Quoting any other
character (including \ itself) is equivalent to the character (e.g.
"\a' isthesame as"a").

Table 4-1: Wildcard Characters used by STRMATCH

The following examples demonstrate various uses of wildcard matching:

Example 1: Find all 4-letter wordsin astring array that begin with “f” or “F” and end
with “t” or “T”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRVATCH(str, 'f??t', /FOLD_CASE) EQ 1)]

Thisresultsin;
f oot Feet FAST fort

Example 2: Find words of any length that begin with “f” and end with “t”:

Comparing Strings Building IDL Applications

Chapter 4: Strings 77
str = ['"foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRVATCH(str, 'f*t', /FOLD CASE) EQ 1)]
Thisresultsin:
f oot Feet FAST ferret fort

Example 3: Find 4-letter words beginning with “f” and ending with “t”, with any
combination of “0” and “€” in between:

str = ['"foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRI NT, str[WHERE(STRVATCH(str, 'f[eo][eo]t', /FOLD _CASE) EQ 1)]
Thisresultsin:

f oot Feet

Example 4: Find al words beginning with “f” and ending with “t” whose second
character is not the letter “0”:

str = ['foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']
PRI NT, str[WHERE(STRVATCH(str, 'f[!o]*t', /FOLD _CASE) EQ 1)]

Thisresultsin:

Feet FAST ferret
Complex Comparisons Using Regular Expressions

A more difficult search than the one above would be to find words of any length
beginning with “f” and ending with “t” without the letter “0” in between. Thiswould
be difficult to accomplish with STRMATCH, but could be easily accomplished using
the STREGEX function:

str = ['"foot', 'Feet', 'fate', 'FAST', 'ferret', 'fort']

PRI NT, STREGEX(str, '~f[70]*t$', /EXTRACT, /FOLD_CASE)

This statement resultsin:
Feet FAST ferret

Note the following about this example:

e Unlikethe* wildcard character used by STRMATCH, the * meta character
used by STREGEX appliesto theitem directly on itsleft, whichin thiscaseis
[0], meaning “any character except the letter ‘0’ . Therefore, [0]* means
“zero or more characters that are not ‘0’ ", whereas the following statement
would find only words whose second character isnot “0”:

PRI NT, str[WHERE(STRVMATCH(str, 'f[!o]*t', /FOLD CASE) EQ 1)]

Building IDL Applications Comparing Strings

78 Chapter 4: Strings

* Theanchors (* and $) tell STREGEX to find only words that begin with “f”
and end with “t”. If we left out the $ anchor, STREGEX would aso return
“fat”, which isasubstring of “fate”.

Regular expressions are somewhat more difficult to use than ssmple wildcard
matching (which iswhy the UNIX shell does matching) but in exchange offers
unparalleled expressive power.

For more on the STREGEX function, see STREGEX in the IDL Reference Guide,
and for an introduction to regular expressions, see “Learning About Regular
Expressions’ on page 79.

Comparing Strings Building IDL Applications

Chapter 4: Strings 79
Learning About Regular Expressions

Regular expressions are avery powerful way to match arbitrary text. Stemming from
neurophysiological research conducted in the early 1940's, their mathematical
foundation was established during the 1950's and 1960's. Their use hasalong history
in computer science, and they are an integral part of many UNIX tools, including
awk, egrep, lex, perl, and sed, as well as many text editors. Regular expressions are
slower than simple pattern matching algorithms, and they can be cryptic and difficult
to write correctly. Small mistakes in specification can yield surprising results. They
are, however, vastly more succinct and powerful than simple pattern matching, and
can easily handle tasks that would be difficult or impossible otherwise.

The topic of regular expressionsisavery large one, complicated by the arbitrary
differencesin the implementations found in various tools. Anything beyond an
extremely smplistic sketch iswell beyond the scope of this manual. To understand
them better, we recommend a good text on the subject, such as“Mastering Regular
Expressions’, by Jeffrey E.F. Friedl (O'Reilly & Associates, Inc, ISBN 1-56592-257-
3). Thefollowing isan abbreviated, simplified, and incomplete explanation of regular
expressions, sufficient to gain a cursory understanding of them.

The regular expression engine attempts to match the regular expression against the
input string. Such matching starts at the beginning of the string and moves from left
to right. The matching is considered to be “greedy”, because at any given point, it
will always match the longest possible substring. For example, if aregular expression
could match the substring ‘aa’ or ‘aad’, it will always take the longer option.

Meta Characters

A regular expression “ordinary character” is a character that matches itself. Most
characters are ordinary. The exceptions, sometimes called “meta characters’, have
special meanings. To convert a meta character into an ordinary one, you “escape” it
by preceding it with a backslash character (e.g. '*'). The meta characters are
described in the following table:

Building IDL Applications Learning About Regular Expressions

80

Chapter 4: Strings

Character

Description

The period matches any character.

[]

The open bracket character indicates a*“bracket expression”,
which is discussed below. The close bracket character
terminates such an expression.

The backslash suppresses the special meaning of the character
it precedes, and turns it into an ordinary character. To insert a
backslash into your regular expression pattern, use adouble
backslash ('\V).

0

The open parenthesis indicates a * subexpression”, discussed
below. The close parenthesis character terminates such a
subexpression.

Repetition
Characters

These characters are used to specify repetition. The repetition
is applied to the character or expression directly to the |eft of
the repetition operator.

Zero or more of the character or expression to the left. Hence,

'‘a*' means “zero or more instances of 'a’ ”.

One or more of the character or expression to the left. Hence,
'at' means “one or more instances of 'a”.

Zero or one of the character or expression to the left. Hence,
‘a? will match 'a or the empty string "

{}

Aninterva qualifier allows you to specify exactly how many
instances of the character or expression to the left to match. If
it encloses asingle unsigned integer length, it meansto match
exactly that number of instances. Hence, 'a{ 3} ' will match
‘agdl. If it encloses 2 such integers separated by a comma, it
specifies arange of possible repetitions. For example, 'a{ 2,4}'
will match 'ad, '‘aaa, or 'aaaa. Notethat '{ 0,1} ' isequivaent to
ol

Table 4-2: Meta characters

Learning About Regular Expressions Building IDL Applications

Chapter 4: Strings 81

Character Description

| Alternation. This operator is used to indicate that one of
several possible choices can match. For example, '(alb|c)Z’
will match any of ‘az', 'bz', or 'cz'.

"$ Anchors. A "\ matches the beginning of astring, and '$'
matches the end. Aswe have seen above, regular expressions
usually match any possible substring. Anchors can be used to
change this and require a match to occur at the beginning or
end of the string. For example, "*abc’ will only match strings
that start with the string "abc’. “*abc$' will only match a string
containing only ‘abc'.

Table 4-2: Meta characters

Subexpressions

Subexpressions are those parts of aregular expression enclosed in parentheses. There
are two reasons to use subexpressions:

« To apply arepetition operator to more than one character. For example,
"(fun){ 3} ' matches 'funfunfun’, while 'fun{ 3} ' matches ‘funnn'.

» Toalow location of the subexpression using the SUBEXPR keyword to
STREGEX.

Bracket Expressions

Bracket expressions (expressions enclosed in square brackets) are used to specify a
set of characters that can satisfy a match. Many of the meta characters described
above (.*[\) lose their special meaning within a bracket expression. The right bracket
loses its special meaning if it occurs as the first character in the expression (after an
initial "N, if any).

There are several different forms of bracket expressions, including:

* Matching List — A matching list expression specifies alist that matches any
one of the charactersin thelist. For example, '[abc]’ matches any of the
characters'a, 'b', or 'c'.

« Non-Matching List — A non-matching list expression begins with a'', and
specifies alist that matches any character not in the list. For example, '[*abc]'

Building IDL Applications Learning About Regular Expressions

82 Chapter 4: Strings

matches any characters except 'a, 'b', or 'c’. The "™ only has this special
meaning when it occursfirst in the list immediately after the opening ['.

» RangeExpression — A range expression consists of 2 characters separated by
a hyphen, and matches any characterslexically within the range indicated. For
example, 'TA-Za-z]' will match any alphabetic character, upper or lower case.
Another way to get this effect is to specify '[a-z]' and usethe FOLD_CASE
keyword to STREGEX.

Learning About Regular Expressions Building IDL Applications

Chapter 5:

Arrays

The following topics are covered in this chapter:

OVEIVIEW . .o 84
Array Subscripts oL 85
Array Subscript Syntax: []Jvs. () 86
Subscript Examples 87
SubscriptRanges 90

Building IDL Applications

Structure of Subarrays
Using Arrays as Subscripts
Combining Array Subscripts with Others . .
Storing Elements with Array Subscripts . ..

83

84 Chapter 5: Arrays
Overview

Arrays are multidimensional data sets which are manipulated according to
mathematical rules. Array elements can be of any IDL datatype, but all elementsof a
given array must be of the same datatype. Array subscripts provide a means of
selecting one or more elements of an array for retrieval or modification.

One-dimensional arrays are often called vectors. The following IDL statement
creates a vector with five single-precision floating-point elements:

array = [1.0, 2.0, 3.0, 4.0, 5.0]

Two-dimensional arrays are often used in image processing and in mathematical
operations (where they are often termed matrices). The following IDL statement
creates a three-column by two-row array:

array = [[1, 2, 3], [4, 5, 6]]

Use the PRINT procedure to display the contents of the array:
PRI NT, array

IDL prints:

1 2 3
4 5 6

Arrays can have up to eight dimensionsin IDL. Thefollowing IDL statement creates
athree-column by four-row by five-layer deep three-dimensional array. In this case,
weusethe IDL FINDGEN function to create an array whose elements are set equal to
the floating-point values of their one-dimensional subscripts:

array = FINDGEN(3, 4, 5)

IDL isan array-oriented language. This means that array operations execute more
efficiently than similar one-dimensional operations. For example, suppose you have a
three-dimensional array and wish to divide each element by two. A language that
does not support array operationswould create aloop to perform the division for each
element; IDL accomplishesthe division in asingle line of code:

array = array/?2

Overview Building IDL Applications

Chapter 5: Arrays 85
Array Subscripts

Subscripts provide ameans of selecting one or more elements of an array for retrieval
or modification.

The values of the selected array elements are extracted when a subscripted variable
reference appearsin an expression. New values are stored in selected array elements,
without disturbing the remaining el ements, when a subscript reference appears on the
left side of an assignment statement. Chapter 10, “Assignment” discusses the use of
the different types of assignment statements when storing into arrays.

The subscripts of an array element denote the address of the el ement within the array.
In the ssimple case of aone-dimensional array, an n-element vector, elements are
numbered starting at O with the first element, 1 for the second element, and running to
n — 1, the subscript of the last element.

Arrays with multiple dimensions are addressed by specifying a subscript expression
for each dimension. A two-dimensional array, amatrix with n columnsand mrows, is
addressed with a subscript of theform [i, j], whereO<i<nand 0 <j <m. Thefirst
subscript, i, is the column index; the second subscript, j, isthe row index. The syntax
of a subscript referenceis:

Variable Name [Subscript_ List]
or
(Array_Expression)[Subscript_List]

The Qubscript_Listissimply alist of expressions, constants, or subscript ranges
containing the values of one or more subscripts. Subscript expressions are separated
by commasiif there is more than one subscript. In addition, multiple elements are
selected with subscript expressions that contain either a contiguous range of
subscripts or an array of subscripts.

Building IDL Applications Array Subscripts

86 Chapter 5: Arrays
Array Subscript Syntax: [] vs. ()

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Function calls use parentheses in avisually identical way to specify argument lists.
Asaresult, the IDL compiler is not able to distinguish between arrays and functions
by looking at the statement syntax. For example, the IDL statement

value = fish(5)

could either set the variable val ue equal to the sixth element of an array named fish,
or set value equal to the result of passing the argument 5 to a function called fish.

To determineif it is compiling an array subscript or afunction call, IDL checksits
internal table of known functions. If it finds a function name that matches the
unknown element in the command (f i sh, in the above example), it calls that
function with the argument specified. If IDL does not find a function with the correct
name in itstable of known functions, it assumes that the unknown element is an
array, and attempts to return the value of the designated element of that array. This
rule generally gives the desired result, but it can be fooled into the wrong choice
under certain circumstances, much to the surprise of the unwary programmer.

For thisreason, versions of IDL beginning with version 5.0 use square brackets rather
than parentheses for array subscripting. An array subscripted in thisway is
unambiguoudly interpreted as an array under all circumstances. In IDL 5.0 and later:

value = fish[5]
sets value to the sixth element of an array named fish.

Dueto the large amount of existing IDL code written in the older syntax, as well as
theingrained habits of thousands of IDL users, IDL continuesto allow the old syntax
to be used, subject to the ambiguity mentioned above. That is, while

value = fish[5]
is unambiguous,
value = fish(5)

is still subject to the same ambiguity—and rules—that applied in IDL versions prior
to version 5.0

Since the older syntax has been used widely, you should not be surprised to see it
from time to time. However, square brackets are the preferred form, and should be
used for new code.

Array Subscript Syntax: [] vs. () Building IDL Applications

Chapter 5: Arrays 87
Subscript Examples

Subscripts can be used either to retrieve the value of one or more array elements or to
designate array elementsto receive new values. The expression ARR[12] denotesthe
value of the 13th element of ARR (because subscripts start at 0), while the statement
ARR[12] = 5 stores the number 5 in the 13th element of ARR without changing the
other elements.

Elements of multidimensional arrays are specified by using one subscript for each
dimension. In arrays and images, the first subscript denotes the column and the
second subscript is the row. For matrices, the first subscript denotes the row and the
second subscript is the column.

If A isa2-element by 3-element array, the elements are stored in memory asfollows:

Stored in Memory
Aop A1 Lowest memory address
Ao A1
Ao A5 Highest memory address

Table 5-1: Storage of IDL Array Elements in Memory

The elements are ordered in memory as: AO,O’ Al,O’ Ao,l’ Al,l’ AO,Z’ A1,2' etc. ThUS,
IDL arraysarerow major (i.e., stored by rows). Thisordering islike FORTRAN. Itis
the opposite of the way C and Pascal handle arrays. IDL uses row major storage
because it is oriented toward image processing while the other languages stress
matrix computation. For a more extensive discussion of row versus column majority
and how it relates to IDL mathematics routines, see “Arrays and Matrices’ in Chapter
16 of the Using IDL manual.

Images are usually displayed with row zero at the bottom of the screen, matching the
display’s coordinate system, although this order can be reversed by setting the system
variable 'ORDER to anonzero value. Arrays are printed with the first row on top.

Elements of multidimensional arrays also can be specified using only one subscript,
in which case the array is treated as a vector with the same number of points. In the
above example, A[2] isthe same element as A [0, 1], and A[5] isthe same element as
Al1, 2.

Building IDL Applications Subscript Examples

88 Chapter 5: Arrays

If an attempt is made to reference a nonexistent element of an array using a scalar
subscript (a subscript that is negative or larger than the size of the dimension minus
1), an error occurs and program execution stops.

Subscripts can be any type of vector or scalar expression. If a subscript expression is

not integer, alongword integer copy is made and used to evaluate the subscript.
“Extra” Dimensions

When creating arrays, IDL eliminatesall size 1, or “degenerate”, trailing dimensions.

Thus, the statements

A = I NTARR(10, 1)
HELP, A

print the following:
A I NT = Array(10)

Thisremoval of superfluous dimensionsis usualy convenient, but it can cause
problems when attempting to write fully general procedures and functions. Therefore,
IDL alowsyou to specify “extra” dimensions for an array as long as the extra
dimensions are al zero. For example, consider avector defined as follows:

ARR = | NDGEN(10)
Thefollowing are al valid references to the sixth element of ARR:

X = ARR[5]
X = ARR[5, 0]
X = ARR[5, 0, 0, *, 0]

Thus, the automatic removal of degenerate trailing dimensions does not cause
problems for routines that attempt to access the resulting array.

Subscripting Scalars

Scalar quantitiesin IDL can be though of as arrays with dimensions of (1,0). They
can be subscripted with a zero reflecting the first and only position. Therefore,

;Assign the value of 5 to A
A=5

;Print the value of the first el enment of A
PRI NT, A[0]

IDL prints:
5

Subscript Examples Building IDL Applications

Chapter 5: Arrays 89

If we redefine the first element of A:

:Redefine the first elenment of A

Al0] =6
PRINT, A
IDL prints:
6

Note

You cannot subscript avariable that has not yet been defined. Thus, if the variable B
has not been previously defined, the statement:

B[0] = 9

will fail with the error “variable is undefined.”

Building IDL Applications Subscript Examples

90 Chapter 5: Arrays

Subscript Ranges

Subscript ranges are used to select asubarray from an array by giving the starting and
ending subscripts of the subarray in each dimension. Subscript ranges can be
combined with scalar and array subscripts and with other subscript ranges. Any
rectangular portion of an array can be selected with subscript ranges. There are four
types of subscript ranges:

* A range of subscripts, written [ey:e], denoting all elements whose subscripts
range from the expression e, through e; (e; must not be greater than e;). For
example, if the variable VEC is a 50-element vector, VEC[5:9] is afive-
element vector composed of VEC][5] through VEC[9].

* All elementsfrom agiven element to the last element of the dimension, written
as[e*]. Using the above example, VEC[10:*] is a 40-element vector made
from VEC[10] through VEC[49].

e A simplesubscript, [n]. When used with multidimensional arrays, smple
subscripts specify only elements with subscripts equal to the given subscript in
that dimension.

» All elements of adimension, written [*]. Thisform is used with
multidimensional arrays to select all elements along the dimension. For
example, if ARR isa10-column by 12-row array, ARR[*, 11] isthelast row of
ARR, composed of elements[ARR[0,11], ARR[1,11], ..., ARR[9,11]], and isa
10-element row vector. Similarly, ARR[O, *] isthefirst column of ARR,
[ARR[0,0], ARR[0,1],..., ARR[0,11]], and its dimensions are 1 column by 12
rows.

Multidimensional subarrays can be specified using any combination of the above
forms. For example, ARR] *, 0: 4] ismadefrom all columns of rows0to 4 of ARR
or a 10-column, 5-row matrix. The table below summarizes the possible forms of
subscript ranges:

Form Description
e A simple subscript expression
€p.e1 Subscript range from eg to 4
ex* All points from element e to end
* All pointsin the dimension

Table 5-2: Subscript Ranges

Subscript Ranges Building IDL Applications

Chapter 5: Arrays 91
Structure of Subarrays

The dimensions of the extracted subarray are determined by the sizein each
dimension of the subscript range expression. In general, the number of dimensionsis
equal to the number of subscripts and subscript ranges. The size of the n-th
dimension is equal to one if asimple subscript was used to specify that dimension in
the subscript; otherwise, it is equal to the number of elements selected by the
corresponding range expression.

Degenerate dimensions (trailing dimensions with a size of one) are removed. This
was illustrated in the previous example by the expression ARR[*,11] which resulted
in arow vector with a single dimension because the last dimension of the result was
one and was removed. On the other hand, the expression ARR[0, *] became a column
vector with dimensions of [1, 12] showing that the structure of columnsis preserved
because the dimension with a size of one does not appear at the end.

Using the examples of VEC, a 50-element vector, and A, a 10-column by 12-row
array, some typical subscript range expressions are as follows:

; Elenents 5 through 10 of VEC, a six-elenent vector.
VE(C] 5: 10]

;A three-el enent vector.
VEC[I - 1:1 + 1]

: The sane vector.
[VEC[I - 1], VEC], VEC[I + 1]]

; Elenents from VEC(4) to the end, a 46-el ement (50-4) vector.
VEC 4: *]

; The fourth colum of A a 1 columm by 12 row vector.
A3, *]

:The first row of A, a 10-elenent row vector. Note, the | ast
; di mensi on was renoved because it was degenerate.

[AI3, 0], A3, 1], ..., A3, 11]]

Al *, 0]

; The ni ne-poi nt nei ghborhood surrounding Al X Y], a 3 by 3 array.
AIX- 1: X+ 1, Y- 1:Y + 1]

; Three colums of A a 3 by 12 subarray:
Al 3:5,*]

See Chapter 10, “Assignment” for a description of the process of assigning values to
subarrays.

Building IDL Applications Structure of Subarrays

92 Chapter 5: Arrays

Using Arrays as Subscripts

Arrays can be used as subscripts to other arrays. Each element in the array used asa
subscript selects an element in the subscripted array. When used with subscript
ranges, more than one element may be selected for each subscript element.

If no subscript ranges are present, the length and structure of the result isthe same as
that of the subscript expression. The type of the result is the same as that of the
subscripted array. If only one subscript is present, al subscripts are interpreted as if
the subscripted array has one dimension.

In the simple case of only one subscript, in which the subscript is an array, the
process can be written as follows:

[l
OVg if 0<S<n
D |
V(S) =0v, if S <0 for0<i<m
O .
EVn_llf S =n

The vector V has n elements, and Shas m elements. The result V(S) has the same
structure and number of elements as does the subscript vector S,

If an element of the subscript array is less than or equal to zero, the first element of
the subscripted variable is selected. If an element of the subscript is greater than or
equal to the last subscript in the subscripted variable (N, above), the last element is
selected.

Example

As an example, consider the commands:

A=1[6 5 1, 8 4, 3]
B=1[0 2 4, 1]

C = Al B

PRINT, C

This produces the following output:
6145

Using Arrays as Subscripts Building IDL Applications

Chapter 5: Arrays 93

Thefirst element of C is 6 because that is the number in the O position of A. The
second is 1 because the value in B of 2 indicates the third positionin A, and so on.

As another example, assume the variable A isa 10 by 10 array. The expression
A[INDGEN(10) * 11] yields a 10-element vector equal to the diagonal elements of A.
The subscripts of the diagonal elements, A[0,0], A[1,1], ..., A[9, 9] areequal to 0, 11,
22, 99, when singularly subscripted. The elements of the vector INDGEN(10)* 11
asoareequal to 0, 11, 22, ..., 99. Applying the vector as a subscript selects the
diagonal elements.

The WHERE function, which returns a vector of subscripts, can be used to select
elements of an array using expressions similar to A[WHERE(A GT 0)] which results
in avector composed only of the elements of A that are greater than 0.

Building IDL Applications Using Arrays as Subscripts

94 Chapter 5: Arrays
Combining Array Subscripts with Others

Array subscripts can be combined with subscript ranges, simple scalar subscripts, and
other array subscripts.

When IDL encounters a multidimensional subscript that contains one or more
subscript arrays, it builds an array of subscripts by processing each subscript from left
to right. The resulting array of subscriptsis then applied to the variable that isto be
subscripted. Aswith other subscript operations, trailing degenerate dimensions (those
with asize of 1) are eliminated.

Subscript Ranges

When combining an array subscript with a subscript range, the result is an array of
subscripts constructed by combining each element of the subscript array with each
member of the subscript range. Combining an n-element array with an m-element
subscript range yields an nm-element subscript. Each dimension of theresult is equal
to the number of elementsin the corresponding subscript array or range.

For example, the expression A[[1, 3, 5], 7:9] isanine-element, 3 x 3 array composed
of the following elements:

A17 Az7 Asy
A1g Aszg Asg
A19 Aszg Asg
Each element of the three-element subscript array (1, 3, 5) is combined with each

element of the three-element range (7, 8, 9).

Another example shows the common process of zeroing the edge elements of atwo-
dimensional n x marray:

;Zero the first and | ast rows.
Al*, [0, M1]] =0

;Zero the first and | ast col ums.
A[O, N- 1], *] =0

Other Subscript Arrays

When combining two subscript arrays, each element of the first array is combined
with the corresponding element of the other subscript array. The two subscript arrays

Combining Array Subscripts with Others Building IDL Applications

Chapter 5: Arrays 95

must have the same number of elements. The resulting subscript array has the same
number of elements as its constituents. For example, the expression A[[1, 3], [5, 9]]
yields the elements A[1,5] and A[3,9].

Scalars

Combining an n-element subscript range or n-element subscript array with ascalar
yields an n-element result. The value of the scalar is combined with each element of
the range or array. For example, the expression A[[1, 3, 5], 8] yields the three-
element vector composed of the elements A[1,8], A[3,8], and A[5,8]. The second
dimension of theresult is1 and is eliminated because it is degenerate. The expression
A[8,[1, 3, 5]] isthe 1 x 3-column vector A[8,1], A[8,3], and A[8,5], illustrating that
leading dimensions are not eliminated.

Building IDL Applications Combining Array Subscripts with Others

96 Chapter 5: Arrays
Storing Elements with Array Subscripts

One or more values can be stored in selected elements of an array by using an array
expression as a subscript for the array on the | eft side of an assignment statement.
Values are taken from the expression on the right side of the assignment statement
and stored in the elements whose subscripts are given by the array subscript. The
right-hand expression can be either ascalar or array.

The subscript array is converted to longword type before use if necessary. Regardless
of structure, this subscript array isinterpreted as a vector. For details and examples of
storing with vector subscripts, see Chapter 10, “Assignment”.

Examples

The statement:
Al[2, 4, 6]] =0

zeroes elements A[2], A[4], and A[6], without changing other elements of A. The
statement:

Al[2, 4, 6]] = 1[4, 16, 36]
stores4in A[2], 16 in A[4], and 36 in A[6].
One way to create a square n x n identity matrix is as follows:

A = FLTARR(N, N)
A[INDGEN(N) * (N + 1)] = 1.0

The expression INDGEN(N)* (N + 1) resultsin a vector containing the subscripts of
the diagonal elements [0, N+1, 2N+2, ..., (N-1)*(N+1)]. Yet another way isto use
two array subscripts. The statements:

A = FLTARR(N, N)
A[INDGEN(N), INDGEN(N)] = 1.0

create the array subscripts [[0,0], [1,1], ..., [n-1, n-1]]. The statement:
A[WHERE(A LT 0)] = -1

sets negative elements of A to -1.

The following statements create a 10x10 identity matrix:

A = FLTARR(10, 10)
A[INDGEN(10) * 11] = 1

Storing Elements with Array Subscripts Building IDL Applications

Chapter 6:

Structures

The following topics are covered in this chapter:

OVEIVIEW ... 98 Arraysof Structures 108
Creating and Defining Structures 99 Structure Input/Output 110
Structure References 102 Advanced StructureUsage 112
Using HELP with Structures 104 Automatic Structure Definition 114
Parameter Passing with Structures 105 Relaxed Structure Assignment........... 116

Building IDL Applications 97

98 Chapter 6: Structures

Overview

IDL supports structures and arrays of structures. A structure isacollection of scalars,
arrays, or other structures contained in avariable. Structures are useful for
representing datain a natural form, transferring datato and from other programs, and
containing agroup of related items of varioustypes. There are two types of structures
and they have similar features.

Named Structures

Each distinct type of named structure is defined by a unique structure name. The first
time a structure nameis used, IDL creates and saves a definition of the structure
which cannot be changed. Each structure definition consists of the structure’s name
and a definition of each field that is a member of the structure. Each instance of a
named structure shares the same definition. Named structures are used when their
definitions will not be changed.

Anonymous Structures

If a structure definition contains no name, an anonymous structure is created. A
unique structure definition is created for each anonymous structure. Use anonymous
structures when the structure, type, and/or dimensions of its components change
during program execution.

Each field definition consists of atag name and a tag definition that contains the type
and structure of the data contained in the field. A field isreferred to by its tag name.
The tag definition is simply an expression or variable. The type, structure, and value
of the tag definition serve to define the field's type, structure, and value. As with
structure definitions, a field definition is fixed and cannot be changed. The contents
of afield can be any type of datarepresentable by IDL. Fields can contain scalars,
arrays of the seven basic data types, and even other structures or arrays of structures.

Overview Building IDL Applications

Chapter 6: Structures 99
Creating and Defining Structures

A named structureis created by executing a structure-definition expression, which is
an expression of the following form:

{Structure_Name, Tag_Name; : Tag_Definition,, ..., Tag_Name,, : Tag_Definition,}

Anonymous structures are created in the same way, but with the structure’s name
omitted.

{Tag_Namel : Tag_Definition , ..., Tag_Name,, : Tag_Definition,,}
Anonymous structures can also be created and combined using the
CREATE_STRUCT function.

Tag names must be unique within a given structure, although the same tag name can
be used in more than one structure. Structure names and tag names follow the rules of
IDL identifiers: they must begin with a letter; following characters can be letters,
digits, or the underscore or dollar sign characters; and case isignored.

As mentioned above, each tag definition is a constant, variable, or expression whose
structure defines the structure and initial value of the field. The result of the structure
definition expression is an instance of the structure, with each field set equal to itstag
definition.

A named structure that has already been defined can be referred to by simply
enclosing the structure’s name in braces, as shown below:

{Sructure Name}

The result of this expression is a structure of the designated name.

Note
When a new instance of a structure is created from an existing named structure, all
of the fieldsin the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data.

Also, when making a named structure that has already been defined, the tag names
need not be present:

Structure Name, expressiony, ..., EXPression
" 1 n

Building IDL Applications Creating and Defining Structures

100

Chapter 6: Structures

All of the expressions must agree in structure with the original tag definition.

Once defined, a given named structure type cannot be changed. If a structure
definition with tag names is executed and the structure already exists, each tag name
and the structure of each tag field must agree with the original definition. Anonymous
structures do not have this restriction because each instance has its own definition.

Structure Inheritance

Structures can inherit tag names and definitions from other structures. To cause one
structure to inherit tags from another, use the INHERITS specifier. For example, if
we define a structure one asfollows:

A = {one, datala: 0, datalb:OL }

we can define a second structure t wo that includes the tags from the one structure
with the following definition statement:

B ={ tw, INHERI TS one, data2:0.0 }
Thisis the same as defining the structure t wo with the statement:
B ={ tw, datala:0, datalb:OL, data2:0.0 }

Note that the fields of the one structure are included in thet wo structurein the
position that the INHERITS specifier appears in the structure definition.

Remember that tag names must be unique. If you use structure inheritance, be sure
that the tag names in the inherited structure do not conflict with the tag namesin the
inheriting structure.

Structures that are inherited must be defined before the inheriting structure can be
defined. If a structure inherits tags from another structure that is not yet defined, IDL
will search for aroutine to define the inherited structure as outlined in “Automatic
Structure Definition” on page 114. If the inherited structure cannot be defined,
definition of the new structure fails.

While structure inheritance can be used with any structure, it is most useful when
dealing with object class structures. When the INHERITS specifier isused in aclass
structure definition, it has the added effect of defining the inheriting object as a
subclass of the inherited class. For adiscussion of object-oriented IDL programming,
see Chapter 20, “Object Basics”.

Example of Creating a Structure

Assume that a star catalog is to be processed. Each entry for astar contains the
following information: star name, right ascension, declination, and an intensity

Creating and Defining Structures Building IDL Applications

Chapter 6: Structures 101

measured each month over the last 12 months. A structure for thisinformation is
defined with the following IDL statement:

A = {star, nane:'', ra:0.0, dec:0.0, inten: FLTARR(12)}

This structure definition is the basis for all examplesin this chapter. The statement
above defines a structure type named st ar , which contains four fields. The tag
names are name, r a, dec, andi nt en. Thefirst field, with the tag nane, contains a
scalar string as given by its tag definition. The following two fields each contain
floating-point scalars. The fourth field, i nt en, contains a 12-element, floating-point
array. Note that the type of the constants, 0.0, is floating point. If the constants had
been written as O, thefields r a and dec would contain short integers.

The same structure is created as an anonymous structure by the statement:

A= {name:'', ra:0.0, dec:0.0, inten: FLTARR(12)}
or by using the CREATE_STRUCT function:
A = CREATE_STRUCT(' nane', '', 'ra', 0.0, 'dec', 0.0, $

"inten', FLTARR(12))

Building IDL Applications Creating and Defining Structures

102 Chapter 6: Structures

Structure References

The basic syntax of areference to afield within a structure is as follows:
Variable Name.Tag_Name

Variable_Name must be a variable that contains a structure. Tag_Name is the name
of the field and must exist in the structure. If the field referred to by the tag name is
itself astructure, the Tag_Name can optionally be followed by one or more additional
tag names, as shown by the following example:

var.tagl.tag2
This nesting of structure references can be continued up to 10 levels. Each tag name,
except possibly the last, must refer to afield that contains a structure.
Subscripted Structure References

A subscript specification can be appended to the variable or tag namesiif the variable
isan array of structures or if thefield referred to by the tag contains an array. Scalar
fields within a structure can also be subscripted, provided the subscript is zero.

Variable Name.Tag_Name[Subscripts]
Variable Name[Subscripts] . Tag_Name...
Variable_Name] Subscripts] . Tag_Name[Subscripts]

Each subscript is applied to the variable or tag name it immediately follows. The
syntax and meaning of the subscript specification is similar to simple array
subscripting in that it can contain a simple subscript, an array of subscripts, or a
subscript range. If avariable or field containing an array is referenced without a
subscript specification, al elements of the item are affected. Similarly, when a
variablethat contains an array of structuresis referenced without a subscript but with
atag name, the designated field in all array elementsis affected. The complete syntax
of references to structures follows. (Optional items are enclosed in braces, {}.)

Structure_reference:= Variable Name{ [Subscripts] } . Tags
Tags.= { Tags.} Tag
Tag:= Tag_Name{[Subscripts] }

For example, al of the following are valid structure references:

Structure References Building IDL Applications

Chapter 6: Structures 103

A B

A BN M
A[12].B
A[3:5].B[*, N
A[12].B.O X, *]

The semantics of storing into a structure field using subscript rangesis slightly
different than that of simple arrays. Thisis because the structure of arraysin fieldsare
fixed. See* Storing Into Array Fields” on page 105.

Examples of Structure References

The name of the star contained in A isreferenced as A.NAME. The entire intensity
array isreferred to as A.INTEN, while the n-th element of A.INTEN isA.INTEN[N].
Thefollowing are valid IDL statements using the STAR structure:

;Store a structure of type STARinto variable A Define the val ues
;of all fields.
A = {star, nanme:'SIRIUS'", ra:30., dec:40., inten:|NDGEN(12)}

; Set nane field. Oher fields remain unchanged.
A. nane = ' BETELGEUSE'

; Print nanme, right ascension, and declination.
PRI NT, A name, A.ra, A dec

;Set Qto the value of the sixth elenent of Ainten. Qwll be a
; floating-point scalar.
Q= A inten[5]

:Set ra field to 23.21.
Ara = 23.21

;Zero all 12 elements of intensity field. Because the type and si ze
;of Alinten are fixed by the structure definition, the semantics of
;assignnent statenments is different than with normal vari abl es.
Ainten = 0

:Store fourth thru seventh elenents of inten field in variable B.
B = A inten[3: 6]

; The integer 12 is converted to string and stored in the name field
; because the field is defined as a string.
A name = 12

;Copy Ato B. The entire structure is copied and B contains a STAR
;structure.
B=A

Building IDL Applications Structure References

104

Chapter 6: Structures

Using HELP with Structures

Using HELP with Structures

Use the HELP, / STRUCTURE command to determine the type, structure, and tag
name of each field in a structure. In the example above, a structure was stored into
variable A. The statement,

HELP, /STRUCTURE, A
prints the following information:

** Structure STAR 4 tags, |ength=40:

NAVE STRING 'SIRIUS
RA FLOAT 30. 0000
DEC FLOAT 40. 0000
| NTEN | NT Array(12)

Using HEL P with anonymous structures prints the structure’s name as a unique
number enclosed in angle brackets. Calling HEL P with the STRUCTURE keyword
and no parameters prints alist of al defined, named structure types and their tag
names.

Building IDL Applications

Chapter 6: Structures 105
Parameter Passing with Structures

An entire structure is passed by reference by simply using the name of the variable
containing the structure as a parameter. Changes to the parameter within the
procedure are passed back to the calling procedure. Fields within a structure are
passed by value. For example, the following statement prints the value of the
structure field A.nane:

PRI NT, A. nane

Any reference to a structure with a subscript or tag name is evaluated into an
expression, hence A. nane is an expression and is passed by value. Thisworks as
expected unless the called procedure returns information in the parameter. For
example, the call

READ, A. nane

doesnot read into A. name but interpretsits parameter as a prompt string. The proper
code to read into the field is as follows.

; Copy type and attributes to variable.
B = A nane

;Read into a sinple variable.
READ, B

:Store result into field.
A.nane = B

Storing Into Array Fields

As mentioned previously, the semantics of storing into structure array fieldsis
dightly different than storing into simple arrays. The main differenceis that with
structures, a subscript range must be used when storing an array into part of an array
field. With normal arrays, when storing an array inside part of another array, use the
subscript of the lower-1eft corner, not a range specification. Other differences occur
because the size and type of afield are fixed by the original structure definition, and
the normal IDL semantics of dynamic binding are not applicable. The rules for
storing into array fields are as follows:

Building IDL Applications Parameter Passing with Structures

106 Chapter 6: Structures

VAR.ARRAY _TAG = Scalar_Expression

All elements of VAR.tag are set to Scalar_Expression. For example:

:Set all 12 elenents of A inten to 100.
A inten = 100

VAR.TAG = Array_Expression

Each element of Array_Expression is copied into the array VAR.tag. If
Array_Expression contains more elements than the destination array does, an error
results. If it contains fewer elements than VAR.TAG, the unmatched e ementsremain
unchanged. For example:

:Set Ainten to the 12 nunbers 0, 1, 2,..., 11.
A.inten = FI NDGEN(12)

;Set Ainten[0] to 1 and Alinten[1] to 2. The other elenents
; remai n unchanged.
Ainten = [1, 2]

VAR.TAG[Subscript] = Scalar_Expression

Thevalue of the scalar expression issimply copied into the designated element of the
destination. If Subscript is an array of subscripts, the scalar expression is copied into
the designated elements. For example:

;Set the sixth elenent of A inten to 100.
A inten[5] = 100

;Set elenments 2, 4, and 6 to 100.
Ainten[[2, 4, 6]] = 100

VAR.TAG[Subscript] = Array_Expression

Unless VAR.tag is an array of structures, the subscript must be an array. Each
element of Array_Expression is copied into the element given by the corresponding
element subscript. For example:

;Set elenents 2, 4, and 6 to the values 5, 7, and 9 respectively.
Ainten[[2, 4, 6]] =[5, 7, 9]

VAR.TAG[Subscript_Range] = Scalar_Expression

The value of the scalar expression is stored into each element specified by the
subscript range. For example:

;Sets elenents 8, 9, 10, and 11 to the val ue 5.
Ainten[8:*] =5

Parameter Passing with Structures Building IDL Applications

Chapter 6: Structures 107

VAR.TAG[Subscript_Range] = Array_Expression

Each element of the array expression is stored into the element designated by the
subscript range. The number of elementsin the array expression must agree with the
size of the subscript range. For example:

:Sets elenents 3, 4, 5, and 6 to the nunbers 0, 1, 2, and 3,

;respectively.
A inten[3:6] = FI NDGEN(4)

Building IDL Applications Parameter Passing with Structures

108 Chapter 6: Structures

Arrays of Structures

An array of structuresis simply an array in which each element is a structure of the
same type. The referencing and subscripting of these arrays (also called structure
arrays) follow the same rules as simple arrays.

Creating an Array of Structures

The easiest way to create an array of structuresisto use the REPLICATE function.
Thefirst parameter to REPLICATE is areference to the structure of each element.
Using the example in “Examples of Structure References’ on page 103 and assuming
the STAR structure has been defined, an array containing 100 elements of the
structure is created with the following statement:

cat = REPLI CATE({star}, 100)
Alternatively, since the variable A contains an instance of the structure STAR, then
cat = REPLI CATE(A, 100)

Or, to define the structure and an array of the structure in one step, use the following
statement:

cat = REPLI CATE({star, name:'', ra:0.0, dec:0.0, $
i nten: FLTARR(12)}, 100)

The concepts and combinations of subscripts, subscript arrays, subscript ranges,
fields, nested structures, etc., are quite general and lead to many possibilities, only a
small number of which can be explained here. In general, any structures that are
similar to the examples above are allowed.

Examples of Arrays of Structures

This example uses the above definition in which the variable CAT contains a star
catalog of STAR structures.

:Set the nane field of all 100 el enents to "EMPTY."
cat.nane = ' EMPTY'

;Set the i-th element of cat to the contents of the star structure.
cat[I] = {star, 'BETELGEUSE' , 12.4, 54.2, FLTARR(12)}

;Store 0.0 into cat[0].ra, 1.0 into cat[1].ra, ..., 99.0 into

;cat[99].ra
cat.ra = | NDGEN(100)

Arrays of Structures Building IDL Applications

Chapter 6: Structures 109

;Prints name field of all 100 el enents of cat, separated by commas
;(the last field has a trailing comm).
PRI NT, cat.nane + ','

:Find index of star with nane of SIRIUS.
I = WHERE(cat.name EQ ' SIRI US")

; Extract intensity field fromeach entry. Qwll be a 12 by 100
; floating-point array.
Q= cat.inten

;Plot intensity of sixth star in array cat.
PLOT, cat[5].inten

; Make a contour plot of the (7,46) floating-point array ;taken from
;months (2:8) and stars (5:50).
CONTOUR, cat[5:50].inten[2: 8]

;Sort the array into ascending order by names. Store the result
back into cat.
cat = cat (SORT(cat. name))

;Determine the nonthly total intensity of all stars in array.

;monthly is now a 12-el ement array.
mont hly = cat.inten # REPLI CATE(1, 100)

Building IDL Applications Arrays of Structures

110

Chapter 6: Structures

Structure Input/Output

Structures are read and written using the formatted and unformatted input/output
procedures READ, PRINT, READU, and WRITEU. Structures and arrays of
structures are transferred in much the same way as simple data types, with each
element of the structure transferred in order.

Formatted Input/Output with Structures

Writing a structure with PRINT or PRINTF and the default format outputs the
contents of each element using the default format for the appropriate data type. The
entire structure is enclosed in braces: “{}”. Each array begins anew line. For
example, printing the variable A, as defined in the first example in this chapter,
results in the following output.

{SIRIUS 30. 0000 40.0000 0123 456789 10 11}

When reading a structure with READ or READF and the default format, white space
should separate each element. Reading string elements causes the remainder of the
input line to be stored in the string element, regardless of spaces, etc. A format
specification can be used with any of these procedures to override the default
formats. The length of string elementsis determined by the format specification (i.e,
to read the next 10 charactersinto a string field, use an (A10) format).

Unformatted Input/Output with Structures

Reading and writing unformatted data contained in structures is a straightforward
process of transferring each element, without interpretation or modification, except in
the case of strings. Each IDL datatype, except strings, has afixed length expressed in
bytes. Thislength (which is padded when using ASSOC, but not padded when using
READU/WRITEU) is aso the number of bytes read or written for each element.

All instances of structures contain an even number of bytes. On machines whose
native C compilers force short integers to begin on an even byte boundary, IDL
begins fields that are not of type byte on an even byte boundary. Thus, a*“ padding
byte” may appear (when using ASSOC for 1/0O) after a byte field to cause the
following non-byte-type field to begin on an even byte. A padding byte is never
added before a byte or byte array field. For example, the structure:

{exanpl e, t1:1b, t2:1}

Structure Input/Output Building IDL Applications

Chapter 6: Structures 111

occupies four bytes on a machine where short integers must begin on an even byte
boundary. When using ASSOC, a padding byte is added after field t 1 to cause the
integer field t 2 to begin on an even-byte boundary.

Strings

Strings are exceptions to the above rules because the length of strings within
structuresis not fixed. For example, oneinstance of the{ st ar } structure can
contain anane field with afive-character name, while another instance of the same
structure can contain a 20-character name. When reading into a structure field that
containsa string, DL reads the number of bytes given by the length of the string. If
the string field contains a 10-character string, 10 characters are read. If the data read
contains anull byte, the length of the string field is truncated, and the null and
following characters are discarded. When writing fields containing strings with the
unformatted procedure WRITEU, IDL writes each character of the string and does
not append a terminating null byte.

String Length Issues

When reading or writing structures containing strings with READU and WRITEU,
make each string in a given field the same length to be compatible with C and to be
able to read the data back into IDL. You must know how many characters exist to
read into a string element. One way around this problem is using the STRING
function with aformat specification that sets the length of all elements to some
maximum number. For example, it is easy to set the length of all nare fieldsin the
cat array to 20 characters by using the following statement.

cat.name = STRI NG cat.nanme, FORVAT = '(A20)')

This statement will truncate nameslonger than 20 characters and will pad with blanks
those names shorter than 20 characters. The structure or structure array then can be
output in aformat suitable to be read by C or FORTRAN programs. For example, to
read into the cat array from afile in which each nane field occupies 26 bytes, use
the following statements.

; Make a 100-el enent array of {STAR} structures, storing a

; 26-character string in each nanme field.

cat = REPLI CATE({star, STRING' ', FORMAT = '(A26)'), $
FLTARR(O., 0.12)}, 100)

; Read the structure. As nmentioned above, 26 bytes will be read for
;each nane field. The presence of a null byte in the file will
;truncate the field to the correct number of bytes.

READU, 1, cat

Building IDL Applications Structure Input/Output

112 Chapter 6: Structures
Advanced Structure Usage

Facilities exist to process structures in a general way using tag numbers rather than
tag names. A tag can be referenced using its index, enclosed in parentheses, as
follows:

Variable Name.(Tag_Index)...

The Tag_Index ranges from zero to the number of fields minus one.

Note
The Tag_Index is an expression, the result of which is taken to be atag position. In
order for the IDL parser to understand that thisis the case, you must enclose the
Tag_Index in parentheses. Thisis not an array indexing operation, so the use of
square brackets ([]) is not allowed in this context.

Number of Structure Tags

The function N_TAGS(Structure) returns the number of fieldsin a structure. To
obtain the size, in bytes, of a structure call N_TAGS with the /LENGTH keyword.

Names of Structure Tags

Thefunction TAG_NAMES(Sructure) returns a string array containing the names of
each tag. To return the name of the structure itself, call TAG_NAMES with the
/STRUCTURE_NAME keyword.

Example

Using tag indices and the above-mentioned functions, we specify a procedure that
reads into a structure from the keyboard. The procedure prompts the user with the
type, structure, and tag name of each field within the structure.

;A procedure to read into a structure, S, fromthe keyboard with

. pronpts.
PRO READ_STRUCTURE, S

; Get the nanmes of the tags.
NAMVES = TAG NAMES(S)
; Loop for each field.

FOR | =0, NTAGSS) - 1 DO BEG N
; Define variable A of same type and structure as the i-th field.
A=S.(I)

Advanced Structure Usage Building IDL Applications

Chapter 6: Structures 113

;Use HELP to print the attributes of the field. Pronpt user with
;tag nane of this field, and then read into variable A S. (1) =
;A. Store back into structure fromA.

HELP, S. (1)
READ, 'Enter Value For Field ', NAMES[I], ': ', A
S.(I) = A

ENDFOR

END

Note
In the above procedure, the READ procedure reads into the variable A rather than
S. (1) because S. (1) isanexpression, not asimple variable reference.
Expressions are passed by value; variables are passed by reference. The READ
procedure prompts the user with parameters passed by value and reads into
parameters passed by reference.

Building IDL Applications Advanced Structure Usage

114 Chapter 6: Structures

Automatic Structure Definition

In versions of IDL prior to version 5, references to an undefined named structure
would cause IDL to halt with an error. This behavior was changed in IDL version 5to
allow the automatic definition of named structures.

When IDL encounters areference to an undefined named structure, it will
automatically search the directories specified in 'PATH for a procedure named
Name__ DEFINE, where Nameis the actual name of the structure. If this procedureis
found, IDL will call it, giving it the opportunity to define the structure. If the
procedure does in fact define the named structure, IDL will proceed with the desired
operation.

Note
There are two underscores in the name of the structure definition procedure.

For example, suppose that a structure named mystruct has not been defined, and that
no procedure named mystruct__define.pro exists in the directories specified by

IPATH. A call to the HELP procedure produces the following output:
HELP, { mystruct }, /STRUCTURE
IDL prints:

% Attenmpt to call undefined procedure/function:' MYSTRUCT__DEFI NE' .
% Structure type not defined: MYSTRUCT.
% Execution halted at: $MAIN$

Suppose now that we define a procedure named mystruct__define.pro as follows, and
placeit in one of the directories specified by |PATH:

PRO nystruct __define
tnp = { nystruct, a:1.0, b:'string }
END

With this structure definition routine available, the call to HELP produces the
following output:

HELP, { mystruct }, /STRUCTURE
IDL prints:

% Conpi | ed nmodul e: MYSTRUCT__ DEFI NE.

** Structure MYSTRUCT, 2 tags, |ength=12:
A FLOAT 0. 00000
B STRI NG '

Automatic Structure Definition Building IDL Applications

Chapter 6: Structures 115

Remember that the fields of a structure created by copying a named structure
definition are filled with zeroes or null strings. Any structure created in this way—
either viaautomatic structure definition or by explicitly creating a new structure from
an existing structure—must be initialized to contain values after creation.

Building IDL Applications Automatic Structure Definition

116 Chapter 6: Structures

Relaxed Structure Assignment

The IDL “=" operator is unable to assign a structure value to a structure with a
different definition. For example, suppose we have an existing structure definition
SRC, asfollows:

source = { SRC, A FINDGEN(4), B:12 }

and we wish to create a second instance of the same structure, but with slightly
different data and a different field:

dest = { SRC, A'INDGEN(2), C: 20 }

Attempting to execute these two statements at the IDL command prompt gives the
following results:

% Conflicting data structures: <INT Array[2] >, SRC.
% Execution halted at: $MAIN$

Versions of IDL beginning with IDL 5.1 include a mechanism to solve this problem.
The STRUCT_ASSIGN procedure performs “relaxed structure assignment,” which
isafield-by-field copy of astructure to another structure. Fields are copied according
to the following rules:

1. Any fieldsfound in the destination structure that are not found in the source
structure are “ zeroed” (set to zero, the empty string, or anull pointer or object
reference depending on the type of field).

2. Any fieldsin the source structure that are not found in the destination structure
are quietly ignored.

3. Any fieldsthat are found in both the source and destination structures are
copied one at atime. If necessary, type conversion is done to make their types
agree. If afield in the source structure has fewer data elements than the
corresponding field in the destination structure, then the “ extra” elementsin
the field in the destination structure are zeroed. If afield in the source structure
has more e ements than the corresponding field in the destination structure, the
extra elements are quietly ignored.

Using STRUCT_ASSIGN, we can make the assignment that failed using the =
operator:

source = { src, a:FINDGEN(4), b:12 }
dest = { dest, a:INDGEN(2), c:20 }
STRUCT_ASSI GN, source, dest, /VERBOSE

Relaxed Structure Assignment Building IDL Applications

Chapter 6: Structures 117

IDL prints:

% STRUCT_ASSIGN: SRC tag A is longer than destination.
The end will be clipped.
% STRUCT_ASSI GN: Destination | acks SRC tag B. Not copi ed.

If we check the variable dest , we see that it has the definition of the dest structure
and the data from the sour ce structure:

HELP, dest, /STRUCTURE

IDL prints:
** Structure DEST, 2 tags, |ength=6:
A I NT Arrayl[2]
C I NT 0

Using Relaxed Structure Assignment

Why would you want to use Relaxed Structure Assignment? One case where this
type of structure definition is very useful isin restoring object structuresinto an
environment where the structure definition may have changed since the restored
objects were saved.

Suppose you have created an application that saves datain structures. Your
application may use the IDL SAVE routine to save the data structures to disk files. If
you later change your application such that the definition of the data structures
changes, you would not be able to restore your saved data into your application’s
framework without relaxed structure assignment. The
RELAXED_STRUCTURE_ASSIGNMENT keyword to the RESTORE procedure
alows you to make relaxed assignments in such cases.

To see how thisworks, try the following exercise:

1. Start IDL, create anamed structure, and use the SAVE procedureto saveit to a
file:

nystruct = { STR A 10, B:20L, C'a string }
SAVE, nystruct, FILE='test.dat’

2. Exitandrestart IDL.
3. Create anew structure definition with the same name you used previoudly:
newstruct = { STR A 20L, B:10.0, C'a string', Dptr_new) }
4. Attempt to restore the variable mystruct from the test.dat file:
RESTORE, 'test.dat'’

Building IDL Applications Relaxed Structure Assignment

118 Chapter 6: Structures

IDL prints:

% W ong nunber of tags defined for structure: STR
% RESTORE: Structure not restored due to conflict with
existing definition: STR

5. Now use relaxed structure definition when restoring:
RESTORE, 'test.dat', /RELAXED STRUCTURE_ASSI GNVENT
6. Check the contents of mystruct:
HELP, nystruct, /STRUCTURE

IDL prints:
** Structure STR, 4 tags, |ength=20:
A LONG 10
B FLOAT 20. 0000
C STRI NG "a string'
D PO NTER <Nul | Poi nt er >

The structure in the variable myst r uct now uses the definition from the new version
of the STR structure, but contains the data from the old (restored) structure. In cases
where the data type of afield has changed, the data type of the old data element has
been converted to the new datatype. Fieldsin the new structure definition that do not
correspond to fields in the old definition contain “ zero” values (zeroes for numeric
fields, empty strings for string fields, null pointer or references for pointer or
reference fields).

Relaxed Structure Assignment Building IDL Applications

Chapter 7:

Pointers

The following topics are covered in this chapter:

OVEIVIEW ..ot 120
Heap Variables 121
Creating Heap Variables 123
Saving and Restoring Heap Variables 124
Pointer Heap Variables 125
IDL Pointerso. ... 126

Building IDL Applications

Operationson Pointers 129
DanglingReferences 133
Heap VariableLeakage 134
Pointer Validity 136
FreeingPointers 137
Pointer Examples 138

119

120

Chapter 7: Pointers

Overview

Overview

In order to build linked lists, trees, and other dynamic data structures, it must be
possible to access variables via lightweight references that may have more than one
name. Further, these names might have different lifetimes, so the lifetime of the
variable that actually holds the data must be separate from the lifetime of the tokens
that are used to accessiit.

Beginning with IDL version 5, IDL includes a new pointer datatype to facilitate the
construction of dynamic data structures. Although there are similarities between IDL
pointers and machine pointers as implemented in languages such as C, it isimportant
to understand that they are not the same thing. IDL pointers are ahigh level IDL
language concept and do not have a direct one-to-one mapping to physical hardware.
Rather than pointing at locations in computer memory, IDL pointers point at heap
variables, which are special dynamically allocated IDL variables. Heap variables are
global in scope, and exist until explicitly destroyed.

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the exanpl es/ doc subdirectory of the IDL distribution.
By default, this directory is part of IDL’s path; if you have not changed your path,
you will be able to run the examples as described here. See |PATH in the IDL
Reference Guide for information on IDL'’s path.

Building IDL Applications

Chapter 7: Pointers 121
Heap Variables

Heap variables are aspecial class of IDL variablesthat have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. (See Chapter 20, “ Object
Basics’ for more information on IDL objects.) In IDL documentation of pointers and
objects, heap variables accessible via pointers are called pointer heap variables, and
heap variables accessible via object references are called object heap variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to al program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

« Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

« Aremanipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

e Can be used to construct arbitrary, fully general data structuresin conjunction
with pointers.

Building IDL Applications Heap Variables

122 Chapter 7: Pointers

Note
If you have used versions of IDL prior to version 5, you may be familiar with
handles. Because IDL pointers provide amore complete and robust way of building
dynamic data structures, Research Systems recommends that you use pointers
rather than handles when devel oping new code. See Appendix I, “ Obsolete
Routines” in the IDL Reference Guide for a discussion of Research Systems' policy
on language features that have been superseded in this manner.

Heap Variables Building IDL Applications

Chapter 7: Pointers 123
Creating Heap Variables

Heap variables can be created only by the pointer creation function PTR_NEW or the
object creation function OBJ_NEW. (See Chapter 20, “Object Basics’ for a
discussion of object creation.) Copying apointer or object reference does not create a
new heap variable. Thisis markedly different from the way IDL handles “regular”
variables. For example, with the statement:

A=10

you create anew IDL floating-point variable with avalue of 1.0. The following
Statement:

B=A

creates a second variable with the same type and value as A.

In contrast, if you create a new heap variable with the following command:
C = PTR_NEW 2. 0d)

the variable C contains not the double-precision floating-point value 2.0, but a
pointer to a heap variable that contains that value. Copying the variable C with the
following statement:

D=C

does not create another heap variable, but rather creates a second pointer to the same
heap variable. In this example, the HEL P command would reveal:

% At $MAIN$

A FLOAT = 1. 00000
B FLOAT = 1. 00000
C PO NTER = <PtrHeapVar 1>
D PO NTER = <PtrHeapVar 1>

The variables C and D are both pointers to the same heap variable. (The actual name
assigned to a heap variableis arbitrary.) Changing the value stored in the heap
variable would be reflected when dereferencing either C or D (dereferencingis
discussed in “Dereference” on page 129).

Destroying or redefining either C, D, or both variables would |eave the contents of
the heap variable unchanged. When all pointers or referencesto agiven heap variable
are destroyed, the heap variable till exists and holds whatever memory has been
allocated for it. See “Heap Variable Leakage” on page 134 for further discussion. If
the heap variableitself is destroyed, pointers to the heap variable may still exist, but
will beinvalid. See “Dangling References’ on page 133.

Building IDL Applications Creating Heap Variables

124 Chapter 7: Pointers
Saving and Restoring Heap Variables

The SAVE and RESTORE procedures work for heap variables just as they work for
all other supported types. When IDL saves a pointer or object referencein asavefile,
it recursively saves the heap variables that are referenced by that pointer or object
reference. SAVE handles circular data structures correctly. You can build alarge,
complicated, self-referential data structure, and then save the entire construct with a
call to SAVE to save the single pointer or object reference that points to the head of
the structure. For example, you can save a pointer to the root of a binary tree and the
entire tree will be saved.

Theinternal identifier of a given heap variable is dynamically allocated at run time,
and will differ between IDL sessions. As aresult, the RESTORE operation maps all
saved pointers and object references to their new valuesin the current session.

Saving and Restoring Heap Variables Building IDL Applications

Chapter 7: Pointers 125
Pointer Heap Variables

Pointer heap variables are IDL heap variables that are accessible only via pointers.
While there are many similarities between object references and pointers, it is
important to understand that they are not the same type, and cannot be used
interchangeably. Pointer heap variables are created using the PTR_NEW and
PTRARR functions. For more information on objects, see Chapter 20, “Object
Basics'.

Building IDL Applications Pointer Heap Variables

126 Chapter 7: Pointers

IDL Pointers

Asillustrated above, you must use a special IDL routine to create a pointer to a heap
variable. Two routines are available: PTR_NEW and PTRARR. Before discussing
these functions, however, it is useful to examine the concept of anull pointer.

Null Pointers

The Null Pointer isaspecial pointer value that is guaranteed to never point at avalid
heap variable. It isused by IDL to initialize pointer variables when no other
initializing valueis present. It is also a convenient value to use at the end nodesin
data structures such as trees and linked lists.

It isimportant to understand the difference between anull pointer and a pointer to an
undefined or invalid heap variable. The second case isavalid pointer to a heap
variable that does not currently contain a usable value. To make the difference clear,
consider the following IDL statements:

; The variable A contains a null pointer.

A = PTR_NEW)

; The variable B contains a pointer to a heap variable with an
; undefi ned val ue.

B = PTR_NEW/ ALLOCATE_HEAP)

HELP, A, B, *B

IDL prints:
A PO NTER = <Nul | Poi nter>
B PO NTER = <PtrHeapVar 1>

<Pt r HeapVar 1> UNDEFI NED = <Undefi ned>

The primary differenceisthat it is possible to write a useful valueinto a pointer to an
undefined variable, but thisis never possible with anull pointer. For example,
attempt to assign the value 34 to the null pointer:

*A = 34
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAIN$

Assign the value 34 to a previously-undefined heap variable:

*B = 34
PRI NT, *B

IDL Pointers Building IDL Applications

Chapter 7: Pointers 127

IDL prints:
34

Similarly, the null pointer is not the same thing as the result of PTR_NEW(0).
PTR_NEW(O) returns a pointer to a heap variable that has been initialized with the
integer value 0.

The PTR_NEW Function

Use the PTR_NEW function to create a single pointer to a new heap variable. If you
supply an argument, the newly-created heap variable is set to the value of the
argument. For example, the command:

ptrl = PTR_NEW FI NDGEN(10))

creates anew heap variable that contains the ten-element floating point array created
by FINDGEN, and places a pointer to this heap variable in ptrl.

Note that the argument to PTR_NEW can be of any IDL datatype, and can include
any IDL expression, including callsto PTR_NEW itself. For example, the command:

ptr2 = PTR . NEW{nane:'"', next: PTR_.NEW)})

creates a pointer to a heap variable that contains an anonymous structure with two
fields: thefirst field is a string, the second is a pointer. We will develop thisidea
further in the examples at the end of this chapter.

If you do not supply an argument, the newly-created pointer will be anull pointer. If
you wish to create a new heap variable but do not wish to initialize it, use the
ALLOCATE_HEAP keyword.

See PTR_NEW in the IDL Reference Guide for further details.
The PTRARR Function

Use the PTRARR function to create an array of pointers of up to eight dimensions.
By default, every element of the array created by PTRARR is set to the null pointer.
For example:

;Create a 2 by 2 array of null pointers.
ptarray = PTRARR(2, 2)

;Display the contents of the ptarray variable, and of the first

;array el enent.
HELP, ptarray, ptarray(O0,0)

Building IDL Applications IDL Pointers

128 Chapter 7: Pointers

IDL prints:

PTARR PO NTER
<Expr essi on> PO NTER

Array(2, 2)
<Nul | Poi nt er >

If you want each element of the array to point to a new heap variable (as opposed to
being a null pointer), use the ALLOCATE_HEAP keyword. Note that in either case,
you will need to initialize the array with another IDL statement.

See PTRARR in the IDL Reference Guide for further details.

IDL Pointers Building IDL Applications

Chapter 7: Pointers 129
Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or
procedures provided by IDL. You cannot, for example, do arithmetic on them or plot
them. You can, of course, do these things with the heap variables referenced by such
pointers, assuming that they contain appropriate data for the task at hand. Pointers
exist to allow the construction of dynamic data structures that have lifetimes that are
independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference,
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for pointer types and are not defined.

Many non-computational functions and proceduresin IDL do work with pointer
variables. Examplesare SIZE, N_ELEMENTS, HELP, and PRINT. It isworth noting
that the only 1/0 allowed directly on pointer variables is default formatted output,
where they are printed as a symbolic description of the heap variable they point at.
Thisis merely adebugging aid for the IDL programmer—input/output of pointers
does not make sense in general and is not allowed. Please note that this does not
imply that I/O on the contents of non-pointer data held in heap variablesis not
alowed. Passing the contents of a heap variable that contains non-pointer data to the
PRINT command is a simple example of thistype of /0.

Assignment

Assignment worksin the expected manner—assigning a pointer to avariable gives
you another variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW FI NDGEN(10))
B=A
HELP, A B

A and B both point at the same heap variable and we see the output:

A PO NTER = <PtrHeapVar 1>
B PO NTER = <PtrHeapVar 1>
Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you
must use the dereference operator, whichis* (the asterisk). The dereference operator
precedes the variable dereferenced. For example, if you have entered the above
assignments of the variables A and B:

Building IDL Applications Operations on Pointers

130

Chapter 7: Pointers

PRI NT, *B
IDL prints:

0. 00000 1.00000 2.00000 3.00000 4.00000 5.00000
6. 00000 7.00000 8.00000 9.00000

That is, IDL printsthe contents of the heap variable pointed at by the pointer variable
B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that
if you are dealing with a pointer array, you must specify which element to
dereference. For example, create a three-element pointer array, allocating a new heap
variable for each element:

ptarr = PTRARR(3, /ALLOCATE HEAP)

To initialize this array such that the heap variable pointed at by the first pointer
contains the integer zero, the second the integer one, and the third the integer two,
you would use the following statement:

FOR|l = 0,2 DO *ptarr[I] =1

Note
The dereference operator is dereferencing only element | of the array for each
iteration. Similarly, if you wanted to print the values of the heap variables pointed
a by the pointersin ptarr, you might be tempted to try the following:

PRI NT, *ptarr
IDL prints:

% Expression rmust be a scalar in this context: PTARR
% Execution halted at: $MAINS$

To print the contents of the heap variables, use the statement:
FOR 1 = 0, N ELEMENTS(ptarr)-1 DO PRINT, *ptarr[l]
Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data
pointed at indirectly via multiple pointers. For example, the statement:

A = PTR_NEW PTR_NEW 47))

Operations on Pointers Building IDL Applications

Chapter 7: Pointers 131

assigns to A apointer to a pointer to a heap variable containing the value 47.
To print this value, use the following statement:

PRINT, **A
Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by
prepending the dereference operator to the front of the structure name. For example,
if you define the following structure:

struct = {data:'10.0', pointer:ptr_new20.0)}

you would use the following command to print the value of the heap variable pointed
at by the pointer in the pointer field:

PRI NT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you
define the following pointer:

ptstruct = PTR_NEWSstruct)

you would use the following command to print the value of the heap variable pointed
at by the pointer field of the st r uct structure, which is pointed at by pt st r uct :

PRI NT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer
within the structure.

Dereferencing the Null Pointer

It isan error to dereference the NULL pointer, an invalid pointer, or a non-pointer.
These cases all generate errors that stop IDL execution. For example:

PRI NT, *45
IDL prints:

% Pointer type required in this context: <INT(45) >,
% Execution halted at: $MAIN$

For example:
A = PTR.NEW) & PRINT, *A
IDL prints:

% Unabl e to dereference NULL pointer: A
% Execution halted at: $MAI N$

Building IDL Applications Operations on Pointers

132

For example:

A = PTR_ NEW23) & PTR FREE, A & PRINT,

IDL prints:

% Invalid pointer: A.
% Execution halted at: SMAINS$

Equality and Inequality

Chapter 7: Pointers

The EQ and NE operators allow you to compare pointersto see if they point at the

same heap variable. For example:

;Make A a pointer to a heap variable containing 23.

A = PTR_NEW 23)

;B points at the same heap variable as A

B=A

;C contains the null
C = PTR_NEW)

PRI NT,
PRI NT,

PRI NT,
PRI NT, '

IDL prints:

Operations on Pointers

A
A
PRI NT, "A
Cc
Cc

OFr OOoOr

Q PTR NEW) & $

Building IDL Applications

Chapter 7: Pointers 133
Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
till referstoit is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message. For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)

;Print A and the value of the heap variable A points to.
PRINT, A *A

IDL prints:
<Pt r HeapVar 13> 23
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

;Try to print again.
PRINT, A *A

IDL prints:

% I nvalid pointer: A
% Execution halted at: $MAIN$

There are several possible approaches to avoiding such errors. The best option isto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereference.

Building IDL Applications Dangling References

134 Chapter 7: Pointers
Heap Variable Leakage

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.

For example:

;Create a new heap vari abl e.
A = PTR_NEW 23)

;Set the pointer A equal to the integer zero. The pointer to the
;heap variable created with the first comrand is |ost.
A=0

Use the HEAP_VARIABLES keyword to the HEL P procedure to view alist of heap
variables currently in memory:

HELP, /HEAP_VARI ABLES
IDL prints:

<PtrHeapVar 14> | NT = 23
In this case, the heap variable <PtrHeapVar14> exists and has a value of 23, but there
is no way to reference the variable. There are two options: manually create a new
pointer to the existing heap variable using the PTR_VALID function (see

PTR_VALID inthe IDL Reference Guide), or do manual “Garbage Collection” and
use the HEAP_GC command to destroy al inaccessible heap variables.

Warning
Object reference heap variables are subject to the same problems as pointer heap
variables. See OBJ VALID in the IDL Reference Guide for more information.

The HEAP_GC procedure causes I DL to hunt for all unreferenced heap variables and
destroy them. It isimportant to understand that thisis a potentially computationally
expensive operation, and should not be relied on by programmers as away to avoid
writing careful code. Rather, the intent is to provide programmers with a debugging
aid when attempting to track down heap variable leakage. In conjunction with the
VERBOSE keyword, HEAP_GC makes it possible to determine when variables have
leaked, and it provides some hint asto their origin.

Heap Variable Leakage Building IDL Applications

Chapter 7: Pointers 135

Warning
HEAP_GC uses arecursive algorithm to search for unreferenced heap variables. If
HEAP_GC is used to manage certain data structures, such as large linked lists, a
potentialy large number of operations may be pushed onto the system stack. If so
many operations are pushed that the stack runs out of room, IDL will crash.

General reference counting, the usual solution to such leaking, istoo slow to be
provided automatically by IDL, and careful programming can easily avoid this
pitfall. Furthermore, implementing a reference counted data structure on top of IDL
pointersis easy to do in those cases where it is useful, and such reference counting
could take advantage of its domain specific knowledge to do the job much faster than
the general case.

Another approach would be to write allocation and freeing routines—Ilayered on top
of the PTR_NEW and PTR_FREE routines—that keep track of all outstanding
pointer allocations. Such routines might make use of pointers themselves to keep
track of the allocated pointers. Such afacility could offer the ability to allocate
pointersin named groups, and might provide aroutine that frees all heap variablesin
agiven group. Such an operation would be very efficient, and is easier than reference
counting.

Building IDL Applications Heap Variable Leakage

136 Chapter 7: Pointers
Pointer Validity

Usethe PTR_VALID function to verify that one or more pointer variables point to
valid and currently existing heap variables, or to create an array of pointersto
existing heap variables. If supplied with a single pointer as its argument,
PTR_VALID returns TRUE (1) if the pointer argument points at avalid heap
variable, or FALSE (0) otherwise. If supplied with an array of pointers, PTR_VALID
returns an array of TRUE and FAL SE values corresponding to the input array. If no
argument is specified, PTR_VALID returns an array of pointersto all existing pointer
heap variables. For example:

;Create a new pointer and heap vari abl e.
A = PTR_NEW 10)

IF PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A points to a valid heap variabl e.
For example:

; Destroy the heap vari abl e.
PTR_FREE, A

I F PTR_VALID(A) THEN PRINT, "A points to a valid heap variable." $
ELSE PRI NT, "A does not point to a valid heap variable."

IDL prints:
A does not point to a valid heap variable.

See PTR_VALID inthe IDL Reference Guide for further details.

Pointer Validity Building IDL Applications

Chapter 7: Pointers 137
Freeing Pointers

The PTR_FREE procedure destroys the heap variables pointed at by pointers
supplied asits arguments. Any memory used by the heap variable isreleased, and the
heap variable ceases to exist. PTR_FREE is the only way to destroy a pointer heap
variable; if PTR_FREE is not called on a heap variable, it continues to exist until the
IDL session ends, even if no pointers remain to referenceit.

Note that the pointers themselves are not destroyed. Pointers that point to nonexistent
heap variables are known as dangling references, and are discussed in more detail in
“Dangling References’ on page 133.

See PTR_FREE in the IDL Reference Guide for further details.

Building IDL Applications Freeing Pointers

138 Chapter 7: Pointers
Pointer Examples

Pointers are useful in building dynamic memory structures, such as linked lists and
trees. The following examples demonstrate how pointers are used to build several
types of dynamic structures. Note that the purpose of these examplesistoillustrate
simply and clearly how pointers are used. As such, they may not represent the “ best”
or most efficient way to accomplish a given task. Readers interested in learning more
about efficient use of data structures are urged to consult any good text on data
structures.

Creating a Linked List

The following example uses pointers to create and manipulate alinked list. One
procedure reads string input from the keyboard and creates alist of pointersto heap
variables that have the strings as their values. Another procedure prints the strings,
given the pointer to the beginning of the linked list. A third procedure uses a modified
“bubble sort” agorithm to reorder the values so the strings are in a phabetical order.

Creating the List

The following program prompts the user to enter a series of strings from the
keyboard. After reading each string, it creates a new heap variable containing alist
element—an anonymous structure with two fields; one to hold the string dataand one
to hold apointer to the next list element. Any number of strings can be entered. When
the user isfinished entering strings, the program can be exited by entering a period by
itself at the “ Enter string:” prompt.

The text of the program shown below can be found inthefilept r _read. pro inthe
exanpl es/ doc subdirectory of the IDL distribution.

; PTR_READ accepts one argunent, a named variable in which to return
;the pointer that points at the beginning of the list.
PRO ptr_read, first

;lnitialize the input string variable.
newstring = "'

; Create an anonynous structure to contain list elenments. Note that
;the next field is initialized to be a null pointer.
Ilist = {nane:'"', next:PTR_NEW)}

;Print instructions for this program

PRI NT, 'Enter a list of nanes.'
PRI NT, 'Enter a period (.) to stop list entry.'

Pointer Examples Building IDL Applications

Chapter 7: Pointers 139

; Continue accepting input until a period is entered.
WH LE newstring NE "." DO BEG N

READ, newstring, PROVWT='Enter string:
; Read a new string fromthe keyboard.

;Check to see if a pointer called first exists. If not, this is
;the first elenent. Create a pointer called first and initialize
;it to be alist element. Create a second pointer to the heap
;variable pointed at by first.
IF newstring NE '.'" THEN BEGQ N
I F NOT(PTR_VALI D(first)) THEN BEG N
first = PTR_NEWIIist)
current = first
ENDI F

;Create a pointer to the next list elenent.
next = PTR_NEWIIi st)

;Set the name field of current to the input string.
(*current).nane = newstring

;Set the next field of current to the pointer to the next |ist
; el ement.
(*current).next = next

;Store the "current” pointer as the "last" pointer.
last = current

; Make the "next" pointer the "current" pointer.
current = next

ENDI F
ENDWHI LE

;Set the next field of the last element to the null pointer.
I F PTR_VALID(l ast) THEN (*last).next = PTR_NEW)

; End of PTR_READ program
END

Run the PTR_READ program by entering the following command at the IDL
prompt:

ptr_read, first

Type a string, press Return, and the program prompts for another string. You can
enter as many strings as you want. Each time astring is entered, PTR_READ creates

Building IDL Applications Pointer Examples

140

Chapter 7: Pointers

anew list element with that string asits value. For example, you could enter the
following three strings (used in the rest of this example):

Enter a |ist of names.

Enter a period (.) to stop list entry.
Enter string: wilm

Enter string: biff

Enter string: cosnp

Enter string:

The following figure shows one way of visualizing the linked list that we've created.

_ name: next: name;: next: name: next:
first:—»| wilma —7»| biff €osmo null

A 4

Table 7-1: One way of visualizing the linked list created by the PTR_READ
procedure

Printing the Linked List

The next program in our example accepts the pointer to the first element of the linked
list and prints all the valuesin thelist in order. To illustrate how the list is linked, we
will aso print the name of the heap variable that contains each element, and the name
of the heap variable in the next field of that element.

Thetext of the program shown below can befound inthefilept r _pri nt. prointhe
exanpl es/ doc subdirectory of the IDL distribution.

; PTR_PRI NT accepts one argunent, a pointer to the first el ement of
;a linked list returned by PTR READ. Note that the PTR PRI NT

; program does not need to know how many el enents are in the Iist,
;nor does it need to explicitly know of any pointer other than the
;first.

PRO ptr_print, first

;Create a second pointer to the heap variable pointed at by first.
current = first

i PTR.VALID returns 0 if its argument is not a valid pointer. Note
;that the null pointer is not a valid pointer.
WHI LE PTR_VALI D(current) DO BEG N

Print the list elenent infornmation.
PRI NT, current, ', named ', (*current).nanme, $

Pointer Examples Building IDL Applications

Chapter 7: Pointers 141

has a pointer to: ', (*current).next

;Set current equal to the pointer inits own next field.
current = (*current). next

ENDWHI LE

; End of PTR_PRI NT program
END

If werunthe PTR_PRINT program with the list generated in the previous example:
I DL> ptr_print, first
IDL prints:

<PtrHeapVar 1>, named wilma, has a pointer to: <PtrHeapVar2>
<PtrHeapVar 2>, named biff, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, named cosnp, has a pointer to: <Null Pointer>

A Simple Sorting Routine for the Linked List

The next example program takes a list generated by PTR_READ and moves the
values so that they arein alphabetical order. The sorting algorithm used in this
program is a variation on the classic “bubble sort”. However, instead of starting with
the last element in the list and letting lower values “rise” to the top, this example
starts at the top of the list and lets higher (“heavier”) values “sink” to the bottom of
the list. Note that thisis not avery efficient sorting algorithm and is shown as an
illustration because of its simplicity. For real sorting applications, use IDL's SORT
function.

Thetext of the program shown below can be found in thefilept r _sort. pro inthe
exanpl es/ doc subdirectory of the IDL distribution.

; PTR_SORT accepts one argunent, a pointer to the first elenent of a
;linked Iist returned by PTR_ READ. Note that the PTR_SORT program
; does not need to know how nany el enments are in the list, nor does
;it need to explicitly know of any pointer other than the first.
pro ptr_sort, first

;lnitialize swap fl ag.
swap = 1

; Create an anonynous structure to contain list elements. Note that
;the next field is initialized to be a pointer.
Ilist = {name:'"', next:PTR_NEW)}

;Create a pointer to this structure, to be used as "swap space."
junk = ptr_new(l!list)

Building IDL Applications Pointer Examples

142 Chapter 7: Pointers

; Continue the sorting until no swaps are nmade. |If no adjacent
;elements need to be swapped, the list is in al phabetical order.
WHI LE swap NE 0 DO BEG N

;Create a second pointer to the heap variable pointed at by
;first.
current = first

; Create another pointer to the heap variable held in the next
:field of current.
next = (*current). next

; Set swap fl ag.
swap = 0

; Continue the sorting until next is no longer a valid pointer.
;Note that the null pointer is not a valid pointer.
VWH LE PTR_VALI D(next) DO BEG N

; Get val ues to conpare.
val uel = (*current).nane
val ue2 = (*next).name

; Conpare val ues and exchange if first is greater than second.
I F (valuel GT value2) THEN BEG N

; Use the "swap space" pointer to exchange the name fiel ds of
;current and next.

(*junk).nane = (*current).nane

(*current).nane = (*next).nane

(*next).nanme = (*junk).name

; Set current to next to advance through the I|ist.
current = next

; Reset swap fl ag.
swap = 1

;1 f valuel is | ess than val ue2, set current to next to advance
;through the list.
ENDI F ELSE current = next

; Redefi ne next pointer.
next = (*current). next
ENDVHI LE
ENDVWHI LE
END

Pointer Examples Building IDL Applications

Chapter 7: Pointers 143

To run the PTR_SORT routine with the list from our previous examples as input,
enter:

ptr_sort, first

We can see the results of the sorting by calling the PTR_PRINT routine again:
ptr_print, first

IDL prints:

<PtrHeapVar 1>, named biff, has a pointer to: <PtrHeapVar2>
<PtrHeapVar 2>, named cosnpo, has a pointer to: <PtrHeapVar3>
<Pt r HeapVar 3>, named wi | ma, has a pointer to: <Null Pointer>

and we see that now the names are in alphabetical order.
Example Files—Using Pointers to Create Binary Trees

Two more-complicated example programs demonstrate the use of IDL pointersto
create and search asimple tree structure. Thesefiles, namedi dl _tree. pro and
tree_exanpl e. pr o, can befound in the exanpl es/ doc subdirectory of the IDL
distribution.

To run the tree examples, enter the following commands at the IDL prompt:

;Conpile the routines in idl_tree. The exanple routine calls the
;routines defined in this file.
.run idl _tree

; Run the tree_exanpl e.
tree_exanpl e

The TREE_EXAMPLE and IDL_TREE routines create a binary tree with ten nodes
whose values are structures that contain random values for two fields, “Time” and
“Data’. The TREE_EXAMPLE routine then prints the tree sorted by both time and
data. It then searches for and deletes the nodes containing the fourth and second data
values. The resulting 8-node trees are again printed in both time and data order.

A detailed explication of the TREE_EXAMPLE and IDL_TREE routinesis beyond
the scope of this chapter. Interested users should examine the files, starting with
tree_example.pro, to see how the trees are created and searched.

Building IDL Applications Pointer Examples

144 Chapter 7: Pointers

Pointer Examples Building IDL Applications

Chapter 8:

Files and

Input/Output

The following topics are covered in this chapter:

OVEIVIEW ..ot 146
Filel/OinIDL 147
Unformatted Input/Output 152
Formatted Input/Output 153
OpeningFiles 155
ClosingFiles 156
Logical Unit Numbers(LUNS) 157

Reading and Writing Very Large Files ... 160
Using Free Format Input/Output 162
Using Explicitly Formatted Input/Output . 167
Format Codes 172

Building IDL Applications

Using Unformatted Input/Output 197
Portable Unformatted Input/Output 204
Associated Input/Output 209
File Manipulation Operations 214
UNIX-Specific Information 224
VMS-Specific Information 227
Windows-Specific Information 237
Macintosh-Specific Information 238
Scientific DataFormats 239

Support for Standard Image File Formats 240

145

146 Chapter 8: Files and Input/Output

Overview

IDL provides powerful facilities for file input and output. Few restrictions are
imposed on datafiles by IDL, and there is no unique IDL format. This chapter
describes IDL input/output methods and routines and gives examples of programs
which read and write datausing IDL, C, and FORTRAN.

Thefirst section of this chapter provides a description for how IDL input/output
works. Itisintentionally brief and isintended to serve only as an introduction.
Additional details are covered in the following sections. For the IDL user, perhaps
the largest single difference between platformsis input/output. The mgority of this
chapter coversinformation that is required in all of the environments IDL supports.
Operating system specific information is concentrated in the final sections of this
chapter.

Overview Building IDL Applications

Chapter 8: Files and Input/Output 147
File /0O in IDL

Before any file input or output can be performed, it is necessary to open afile. Thisis
done using either the OPENR (Open for Reading), OPENW (Open for Writing), or
OPENU (Open for Update) procedures. When afileis opened, it is associated with a
Logical Unit Number, or LUN. All file input and output routinesin IDL usethe LUN
rather than the filename, and most require that the LUN be explicitly specified. Once
afileis opened, several input/output routines are available for use. Each routine fills
a particular need — the one to use depends on the particular situation.

There are three exceptions to the need to open any file before performing
input/output on it. Three files are always open —in fact, the user is not allowed to
close them. These files are the standard input (usually the keyboard), the standard
output (usually the IDL log window), and the standard error output (usually the
terminal screen). These three files are associated with LUNsO, -1, and -2,
respectively. Because these files are aways open, there is no need to open them prior
to using them for input/output. The READ and PRINT procedures automatically use
these files, so basic formatted input/output is extremely simple.

Simple Examples
It is easy to use input/output using the default input and output files. The IDL
command:
PRINT, 'Hello Wrld.'
causes IDL to print the line:
Hell o Worl d.

ontheterminal screen. This happens because PRINT formatsits arguments and prints
them to LUN -1, which is the standard output file. It is only dightly more
complicated to use other files. The following IDL statements show how the above
“Hello World” example could be sent to afile named hello.dat:

;Open LUN 1 for hello.dat with wite access.
OPENW 1, 'hello.dat’

; Do the output operation to the file.
PRINTF, 1, 'Hello World.'

:Close the file.
CLCSE, 1

Building IDL Applications File I/0 in IDL

148 Chapter 8: Files and Input/Output

Routines for Input/Output

The following routines are useful when doing input/output operations. For more
information on these commands, see IDL Reference Guide.

Routine

Description

ASCII_TEMPLATE

Presents a GUI that generates atemplate
defining an ASCI| file format.

ASSOC

Associates an array structure with afile.

BINARY_TEMPLATE

Presents a GUI for interactively generating a
template structure for use with
READ_BINARY.

CDF Routines

Common Data Format routines.

CLOSE

Closes the specified files.

DIALOG_READ_IMAGE

Presents GUI for reading image files.

DIALOG_WRITE_IMAGE

Presents GUI for writing image files.

EOF

Tests the specified file for the end-of-file
condition.

EOS Routines HDF-EOS (Hierarchical Data Format-Earth
Observing System) routines.

FILEPATH Returns full path to afileinthe IDL distribution.

FINDFILE Finds all files matching given file specification.

FLUSH Flushes file unit buffers.

FREE_LUN Frees previoudly-reserved file units.

FSTAT Returns information about a specified file unit.

GET_KBRD Getsoneinput IDL character.

GET_LUN Reserves alogical unit number (file unit).

HDF Routines Hierarchical Data Format routines.

HDF_BROWSER

Opens GUI to view contents of HDF, HDF-
EOS, or NetCDFfile.

Table 8-1: Routines for Input/Output

File /0O in IDL

Building IDL Applications

Chapter 8: Files and Input/Output

149

Routine Description

HDF READ ExtractsHDF, HDF-EOS, and NetCDF dataand
metadata into an output structure.

IOCTL Performs special functions on UNIX files.

MPEG_CLOSE Closes an MPEG sequence.

MPEG_OPEN Opens an MPEG sequence.

MPEG_PUT Inserts an image array into an MPEG sequence.

MPEG_SAVE Saves an MPEG sequence to afile.

NCDF Routines Network Common Data Format routines.

OPEN Opensfiles for reading, updating, or writing.

POINT_LUN Sets or gets current position of the file pointer.

PRINT/PRINTF Writes formatted output to screen or file.

READ/READF Reads formatted input from keyboard or file.

READ_ASCII Reads data from an ASCI| file.

READ_BINARY Reads the contents of a binary file using a
passed template or basic command line
keywords.

READ_BMP Reads Microsoft Windows bitmap file (.BMP).

READ_DICOM Reads an image from a DICOM file.

READ_IMAGE Reads the image contents of afile and returns

theimagein an IDL variable.

READ_INTERFILE

Reads Interfile (v3.3) file.

READ_JPEG Reads JPEG file.

READ_PICT Reads Macintosh PICT (version 2) bitmap file.

READ_PNG Reads Portable Network Graphics (PNG) file.

READ_PPM Reads PGM (gray scale) or PPM (portable
pixmap for color) file.

READ_SRF Reads Sun Raster Format file.

Table 8-1: Routines for Input/Output (Continued)

Building IDL Applications

File /0O in IDL

150

File /0O in IDL

Chapter 8: Files and Input/Output

Routine Description
READ_SYLK Reads Symbolic Link format spreadsheet file.
READ_TIFF Reads TIFF format file.

READ_ WAV Reads the audio stream from the named .WAV
file.

READ_WAVE Reads Wavefront Advanced Visualizer file.

READ_X11 BITMAP Reads X 11 bitmap file.

READ_XWD Reads X Windows Dump file.

READS Reads formatted input from a string variable.

READU Reads unformatted binary datafrom afile.

REWIND (VMS only)

Rewinds tape on designated IDL tape unit.

SKIPF

Skips records or files on the designated
magnetic tape unit.

SOCKET Opens aclient-side TCP/IP Internet socket asan
IDL file unit.

TAPRD Reads the next record on atape.

TAPWRT Writes data to atape.

TVRD Reads an image from awindow into a variable.

VAX_FLOAT Determines the default value for the
VAX_FLOAT keyword to the OPEN
procedures, or if an open file unit has the
VAX_FLOAT attribute set.

WEOF Writes an end-of-file mark on the designated
tape unit.

WRITE_BMP Writes Microsoft Windows Version 3 device
independent bitmap file (BMP).

WRITE_IMAGE Writes an image and its color table vectors, if
any, to afile of a specified type.

WRITE_JPEG Writes JPEG file.

Table 8-1: Routines for Input/Output (Continued)

Building IDL Applications

Chapter 8: Files and Input/Output

151
Routine Description
WRITE_NRIF Writes NCAR Raster Interchange Format
rasterfile.
WRITE_PICT Writes Macintosh PICT (version 2) bitmap file.
WRITE_PNG Writes Portable Network Graphics (PNG) file.
WRITE_PPM Writes PPM (true-color) or PGM (gray scale)
file.
WRITE_SRF Writes Sun Raster File (SRF).
WRITE_SYLK Writes SYLK (Symbolic Link) spreadsheet file.
WRITE_TIFF Writes TIFF file with 1 to 3 channels.
WRITE_WAV Writes the audio stream to the named WAV
file.
WRITE_WAVE Writes Wavefront Advanced Visuaizer ((WAV)

file.

WRITEU

Writes unformatted binary datato afile.

Table 8-1: Routines for Input/Output (Continued)

Building IDL Applications

File /0O in IDL

152 Chapter 8: Files and Input/Output

Unformatted Input/Output

Unformatted Input/Output is the most basic form of input/output. Unformatted
input/output transfers the internal binary representation of the data directly between
memory and thefile.

Advantages of Unformatted 1/O

Unformatted input/output is the simplest and most efficient form of input/output. Itis
usually the most compact way to store data.

Disadvantages of Unformatted 1/O

Unformatted input/output isthe least portable form of input/output. Unformatted data
files can only be moved easily to and from computers that share the same interna
data representation. It should be noted that XDR (eXternal Data Representation)
files, described in “ Portable Unformatted Input/Output” on page 204, can be used to
produce portable binary data.

Unformatted input/output is not directly human readable, so you cannot typeit out on
aterminal screen or edit it with atext editor.

Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 153
Formatted Input/Output

Formatted output converts the internal binary representation of the datato ASCI|
characters which are written to the output file. Formatted input reads characters from
the input file and converts them to internal form. Formatted 1/O can be either “ Freg”
format or “ Explicit” format, as described below.

Advantages of Formatted 1/O

Formatted input/output is very portable. It isasimple process to move formatted data
files to various computers, even computers running different operating systems, as
long asthey all use the ASCII character set. (ASCII isthe American Standard Code
for Information Interchange. It is the character set used by almost all current
computers, with the notable exception of large IBM mainframes.)

Formatted files are human readable and can be typed to the terminal screen or edited
with atext editor.

Disadvantages of Formatted I/O

Formatted input/output is more computationally expensive than unformatted
input/output because of the need to convert between internal binary data and ASCI|
text. Formatted data requires more space than unformatted to represent the same
information. Inaccuracies can result when converting data between text and the
internal representation.

Free Format I/O

With free format input/output, IDL uses default rules to format the data.

Advantages of Free Format 1/0O

The user isfree of the chore of deciding how the data should be formatted. Free
format is extremely simple and easy to use. It provides the ability to handle the
majority of formatted input/output needs with a minimum of effort.

Disadvantages of Free Format I/O

The default formats used are not always exactly what is required. In this case, explicit
formatting is necessary.

Explicit Format 1/O

Explicit format 1/0O allows you to specify the exact format for input/output.

Building IDL Applications Formatted Input/Output

154

Chapter 8: Files and Input/Output

Advantages of Explicit /0

Explicit formatting allows a great deal of flexibility in specifying exactly how data
will be formatted. Formats are specified using a syntax that is similar to that used in
FORTRAN format statements. Scientists and engineers already familiar with
FORTRAN will find IDL formats easy to write. Commonly used FORTRAN format
codes are supported. In addition, IDL formats have been extended to provide many of
the capabilities found in the scanf () and printf () functions commonly found in the C
language runtime library.

Disadvantages of Explicit /0

Using explicitly specified formats requires the user to specify more detail—they are,
therefore, more complicated to use than free format.

The type of input/output to use in a given situation is usually determined by
considering the advantages and disadvantages of each method as they relate to the
problem to be solved. Also, when transferring data to or from other programs or
systems, the type of input/output is determined by the application. The following
suggestions are intended to give arough idea of the issues involved, though there are
always exceptions:

* Images and large data sets are usually stored and manipulated using
unformatted input/output in order to minimize processing overhead. The IDL
ASSOC function is often the natural way to access such data.

» Datathat need to be human readable should be written using formatted
input/output.

» Datathat need to be portable should be written using formatted input/output.
Another option is to use unformatted X DR files by specifying the XDR
keyword with the OPEN procedures. Thisis especially important if moving
between computers with markedly different internal binary dataformats. XDR
is discussed in “ Portable Unformatted Input/Output” on page 204.

» Freeformat input/output is easier to use than explicitly formatted input/output
and about as easy as unformatted input/output, so it is often agood choice for
small files where there is no strong reason to prefer one method over another.

* Specia well-known complex file formats are usually supported directly with
specia IDL routines (e.g. READ_JPEG for JPEG images).

Formatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 155
Opening Files

Before afile can be processed by IDL, it must be opened using one of the procedures
described in the following table. All open files are associated with aLUN (Logical
Unit Number) within IDL, and al input/output routines refer to files viathis number.
For example, to open the file named data.dat for reading on file unit 1, use the
following statement:

OPENR, 1, 'data.dat'

The OPEN procedures can be used with certain keywords to modify their normal
behavior. Some keywords are generally applicable, while others only have effect
under a given operating system. Some operating system specific keywords are
alowed (and ignored) under other operating systems in order to facilitate writing
portable routines.

Procedure Description
OPENR Opens an existing file for input only.
OPENW Opensanew filefor input and output. Under UNIX, Windows,

and on the Macintosh, if the named file already exists, itsold
contents are overwritten. Under VMS, afile with the same
name and a higher version number is created.

OPENU Opens an existing file for input and output.

Table 8-2: IDL File Opening Commands

Platform-Specific Keywords to the OPEN Procedure
Different computers and operating systems perform input/output in different ways.

See OPEN in the IDL Reference Guide for keywords to the OPEN procedures that
apply under UNIX, VMS, Windows, or the Macintosh OS.

Building IDL Applications Opening Files

156

Chapter 8: Files and Input/Output

Closing Files

Closing Files

After work involving the file is complete, it should be closed. Closing afile removes
the association between the file and its unit number, thus freeing the unit number for
use with adifferent file. There is usually an operating system-imposed limit on the
number of files a user may have open at once. Although this number islarge enough
that it rarely causes problems, situations can occur where afile must be closed before
another file may be opened. In any event, it is good style to only keep needed files
open.

There are three ways to close afile:
* Usethe CLOSE procedure.

* Usethe FREE_LUN procedure on aLUN that has been allocated by
GET_LUN.

e ExitIDL. IDL closesall open fileswhen it exits.

Calling the CLOSE procedure is the most common way to close afile unit. For
example, to close file unit number 1, use the following statement:

CLCSE, 1

In addition, if FREE_LUN is caled with afile unit number that was previously
allocated by GET_LUN, it calls CLOSE before deallocating the file unit. Finaly, al
open files are automatically closed when IDL exits.

Building IDL Applications

Chapter 8: Files and Input/Output 157
Logical Unit Numbers (LUNS)

IDL Logical Unit Numbers (LUNSs) fall within the range -2 to 128. Some LUNs are
reserved for special functions as described bel ow.

The Standard Input, Output, and Error LUNs

The three LUNSs described below have special meanings that are operating system
dependent:

UNIX

Logica Unit Numbers 0, -1, and -2 are tied to stdin, stdout, and stderr, respectively.
Thismeansthat the normal UNIX file redirection and pipe operations work with IDL.
For example, the shell command

%dl < idl.inp >&idl.out &

will cause IDL to execute in the background, reading its input from the fileidl.inp
and writing its output to the file idl.out. Any messages sent to stderr are also sent to
idl.out.

When using the IDL Development Environment (IDLDE), Logical Unit NumbersO, -
1, and -2 are tied to stdin (the command line), stdout (the log window), and stderr
(the log window), respectively.

VMS

Logical Unit NumbersO, -1, and -2 are tied to SYSSINPUT, SYSSOUTPUT, and
SYSPERROR respectively. This means that the DCL DEFINE command can be used
to redefine where IDL gets commands and writes its output. It also meansthat IDL
can be used in command and batch files.

When using the IDL Development Environment (IDLDE), Logical Unit NumbersO, -
1, and -2 are tied to SYSSINPUT (the command line), SYSSOUTPUT (the log
window), and SYSPERROR (the log window), respectively.

Windows and Macintosh

Logical Unit NumbersO0, -1, and -2 aretied to stdin (the command line), stdout (the
log window), and stderr (the log window), respectively.

These special file units are described in more detail below.

Building IDL Applications Logical Unit Numbers (LUNSs)

158

Chapter 8: Files and Input/Output

File Unit O

This LUN represents the standard input stream, which is usually the keyboard.
Therefore, the IDL statement:

READ, X

is equivalent to the following:
READF, 0, X

File Unit -1

ThisLUN representsthe standard output stream, which isusually the terminal screen.
Therefore, the IDL statement:

PRINT, X

is equivalent to the following:
PRINTF, -1, X

File Unit -2

This LUN represents the standard error stream, which is usually the terminal screen.

File Units 1-99

These are the file units for normal interactive use. When using IDL interactively, the
user arbitrarily selects the file units used. The file units from 1 to 99 are available for
this use.

File Units 100-128

These are thefile units managed by the GET_LUN and FREE_LUN procedures. If an
IDL procedure or function that usesfiles is written to explicitly use agiven file unit,
thereis achance that it will conflict with other routines that use the same unit. Itis
therefore necessary to avoid explicit file unit numbers when writing IDL procedures
and functions. The GET_LUN and FREE LUN procedures provide a standard
mechanism for IDL routines to obtain unique file units. GET_LUN allocates afile
unit from a pool of free unitsin the range 100 to 128. This unit will not be allocated
again until it isreleased by acall to FREE_LUN. Meanwhile, it is available for the
exclusive use of the program that allocated it. A typical procedure that needs afile
unit might be structured as follows:

PRO DEMO
;Get a unique file unit and open the file.
OPENR, UNIT, /GET_LUN

Logical Unit Numbers (LUNS) Building IDL Applications

Chapter 8: Files and Input/Output 159

; Body of program goes here.

:Return file unit.
FREE LUN, UNIT

;Since the file is still open, FREE LUN will automatically call
; CLOSE.
END

Note
All IDL procedures and functions that open files should use GET_LUN/ FREE_LUN
to obtain file units. Furthermore, the file units between 100 and 128 should never be
used unless previously allocated by GET_LUN.

Building IDL Applications Logical Unit Numbers (LUNSs)

160 Chapter 8: Files and Input/Output
Reading and Writing Very Large Files

IDL on al platformsis ableto read and write data from files up to 231-1 bytesin
length. On some platforms, it is also able to read and write data from files longer than
this limit.

Tip
To seeif IDL on your platform supports large files, use the following:

PRI NT, !'VERSION. FI LE_OFFSET_BI TS

IF“64" isreturned, the platform supports large files. For more information, see
I'VERSION in the IDL Reference Guide.

When reading and writing to files smaller than this limit, there is no differencein
behavior between the platforms that can and those that cannot handle larger files. IDL
uses longword integers for file position arguments (e.g. POINT_LUN, FSTAT) and
keywords, as before. However, when dealing with files that exceed thislimit, IDL
uses signed 64-bit integersin order to be able to properly represent the offset.
Consider the following example:

;Open the file
OPENW 1, 'test.dat’

;lnitial position should be O.
PO NT_LUN, -1, PGS

;Print the position and its type.
HELP, POS

; Move the file pointer past the signed 32-bit boundary.
PO NT_LUN, 1, 'O00O0OOOffffffffff'x

; The position is now too large to represent as a | ongword.
PO NT_LUN, -1, PCS

;Print the position and its type.
HELP, POS

CLCSE, 1

Reading and Writing Very Large Files Building IDL Applications

Chapter 8: Files and Input/Output 161

Executing these statements results in the following output:

0
1099511627775

PGS LONG
PCS LONG54

Initially, the file position is 0, which fits easily into a 32-bit integer. Once the file
position exceeds the range of asigned 32-bit number, IDL automatically shiftsto the
64-bit integer type.

Limitations of Large File Support

There are limitations on IDL’s support for very large files that must be understood by
the IDL programmer:

e Onany platform, the amount of datathat IDL can transfer in asingle operation
islimited by the amount of memory it can allocate. On most platforms, IDL is
a 32-bit program, and as such, can theoretically address up to 2/31-1 bytes of
memory (approximately 2.3GB). On these 32-bit platforms, reading, writing,
and processing data larger than this limit must be done in multiple operations.
Most systems do not have 2.3 GB of memory available, and other programs
running on the system also compete for the same memory, so the actual
memory availableislikely to be considerably smaller.

To seeif your platform is 32- or 64-bit, use the following:
PRI NT, ! VERSI ON. MEMORY_BI TS

IF“32" isreturned, your platform is 32-bit. If “64” isreturned, your platform
is 64-bit. For more information, see 'VERSION in the IDL Reference Guide.

e The ability to read or write to very large filesis constrained by the ability of
the underlying file system to support such files. Many platforms can only
support large files on certain file systems. For example, many platforms will
be unable to support these operations on NFS mounted file systems because
NFS version 3 and later must be in use on both client and server. Some
platforms, such HP-UX, can only support such operations on specia largefile
systems, and only if they are mounted using the appropriate mount options.
Consult your system documentation to determine the limitations present on
your system and the procedures for supporting very largefile.

Building IDL Applications Reading and Writing Very Large Files

162 Chapter 8: Files and Input/Output
Using Free Format Input/Output

Use of formatted datais most appropriate when the data must be in human readable
form, such aswhen it is to be prepared or modified with atext editor. Formatted data
also are highly portable between various computers and operating systems.

In addition to the PRINT, PRINTF, READ, and READF routines already discussed,
the STRING function can be used to generate formatted output that is sent to a string
variable instead of afile. The READS procedure can be used to read formatted input
from astring variable.

The exact format of the character data may be specified to these routines by
providing aformat string viathe FORMAT keyword. If no format string is given,
default formats for each type of data are applied. This method of formatted
input/output is called free format. Free format input/output is suitable for most
applications involving formatted data. It is designed to provide input/output abilities
with aminimum of programming.

Structures and Free Format Input/Output

IDL structures present a special problem for default formatted input and output. The
default format for displaying structure datais to surround the structure with curly
braces ({}). For example, if you define an anonymous structure:

struct = { A2, B3, C'AString }

and then use default formatted output viathe PRINT command:
PRI NT, struct

IDL prints:
{ 2 3 A String}

You might suppose that default formatted input would recognize that the curly braces
are part of the formatting and ignore them. Thisis not the case, however. By default,
to read the third field in the structure (the string field) IDL will read from the “A” to

the end of the line, including the closing brace.

This behavior, while unsymmetric, seemsto be the best choice for default behavior—
displaying the result of the PRINT statement on the computer screen. We recommend
that you use explicitly formatted input/output when reading and writing structures to
disk files, so as not to have to explicitly code around the possibility that your
structure may include strings.

Using Free Format Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 163

Free Format Input

The following rules are used by IDL to perform free format input:

1. Inputisperformed on scalar variables. Array and structure variables are treated
as collections of scalar variables. For example,

A = | NTARR(5)
READ, A

causes IDL to read five separate values to fill each element of the variable A.

2. If the current input line is empty and there are variables | eft requiring input,
read another line.

3. If thecurrent input lineis not empty but there are no variables left requiring
input, the remainder of the lineisignored.

4. |Input data must be separated by commas or white space (tabs, spaces, or new
lines).

5. When reading into a variable of type string, all characters remaining in the
current input line are placed into the string.

6. When reading into numeric variables, every effort is made to convert the input
into avalue of the expected type. Decimal points are optional and exponential
(scientific) notation is alowed. If afloating-point datum is provided for an
integer variable, the valueis truncated.

7. Whenreading into avariable of complex type, thereal and imaginary parts are
separated by a comma and surrounded by parentheses. If only asinglevalueis
provided, it istaken asthe real part of the variable, and the imaginary part is
Set to zero. For example:

;Create a conpl ex vari abl e.
A = COVPLEX(0)

;1 DL pronpts for input with a colon:
READ, A

; The user enters "(3,4)" and Ais set to COWLEX(3, 4).
(3, 4)

;1 DL pronpts for input with a colon:
READ, A

; The user enters "50" and Ais set to COVPLEX(50, 0).
: 50

Building IDL Applications Using Free Format Input/Output

164 Chapter 8: Files and Input/Output

Free Format Output

Thefollowing rules are used by IDL to perform free format output:

1. Theformat used to output numeric data is determined by the data type. The
formats used are summarized in the table below. The formats are specified in
the FORTRAN-like style used by IDL for explicitly formatted input/output.

Data Type Format
Byte 14
Int, Ulnt 18
Long, ULong 112
Float G13.6
Long64, ULong64 122
Double Gl6.8
Complex '(, G13.6,'),G13.6, ")
Double-precision Complex '(,G16.8,'',G16.8,")
String Output full string on current line.

Table 8-3: Formats Used for Free-Format Output

2. Thecurrent output lineisfilled with characters until one of the following
happens:

A. Thereisno more datato output.

B. Theoutput lineisfull. When output isto afile, the default line width is 80
columns (you can override this default by setting the WIDTH keyword to
the OPEN procedure). When the output is to the standard output, IDL uses
the current width of your tty or command log window.

C. Anentirerow isoutput in the case of multidimensional arrays.

3. When outputting a structure variable, its contents are bracketed with “{” and
“1” characters.

Using Free Format Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 165

Example: Free Format Input/Output

IDL free format input/output is extremely easy to use. The following IDL statements
demonstrate how to read into a complicated structure variable and then print the
results:

;Create a structure nanmed "types" that contains seven of the basic
;1 DL data types, as well as a floating-point array.
A = {TYPES, A'0B, B:0, COL, D1.0, E1D, $

F: COWLEX(0), G ‘'string' , E FLTARR(5)}

;Read free-formatted data from i nput
READ, A

;1DL pronpts for input with a colon. W enter values for the first
;six nuneric fields of A and the string.
12345(6,7) EIGH

Notice that the complex value was specified as (6, 7). If the parentheses had been
omitted, the complex field of A would have received the value COMPLEX(6, 0), and
the 7 would have been input for the next field. When reading into a string variable,
IDL starts from the current point in the input and continues to the end of the line.
Thus, we do not enter values intended for the rest of the structure on thisline.

; There are still fields of A that have not received data, so |IDL
;prompts for another |ine of input.
9 10 11 12 13

: Show the result.
PRI NT, A

Executing these statements results in the following output:

{ 1 2 3 4. 00000 5. 0000000
(6. 00000, 7.00000) ei ght

9. 00000 10. 0000 11. 0000 12. 0000 13. 0000
}

When producing the output, IDL uses default rules for formatting the values and
attempts to place as many items as possible onto each line. Because the variable A is
astructure, braces{} are placed around the output. As noted above, when IDL reads
strings it continues to the end of the line. For this reason, it is usually convenient to
place string variables at the end of the list of variables to be input. For example, if S
isastring variableand | isan integer:

;Read into the string first.
READ, S, |

Building IDL Applications Using Free Format Input/Output

166 Chapter 8: Files and Input/Output

;1 DL prompts for input. W enter a string value foll owed by an
;i nteger.
Hello World 34

; The entire previous line was placed into the string variable S,

;and | still requires input. IDL pronpts for another Iine.
34

Using Free Format Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 167
Using Explicitly Formatted Input/OQutput

The FORMAT keyword can be used with the formatted input/output routines to
explicitly specify the appearance of the data. The syntax of IDL format stringsis
extremely similar to that used in FORTRAN. The format string specifies the format
in which datais to be transferred as well as the data conversion required to achieve
that format. The format specification strings supplied by the FORMAT keyword have
the form:

FORMAT = ' (qgqfqS1foso ... a0’
where g, f, and s are described below.
Record Terminators

g is zero or more slash (/) record terminators. On output, each record terminator
causes the output to move to anew line. On input, each record terminator causes the
next line of input to be read.

Format Codes

f isaformat code. Some format codes specify how data should be transferred while
others control some other function related to how input/output is handled. The code f
can also be a nested format specification enclosed in parentheses. Thisiscalled a
group specification and has the following form:

...[n](q1f151f252 fnqn)

A group specification consists of an optional repeat count n followed by aformat
specification enclosed in parentheses. Use of group specifications allows more
compact format specifications to be written. For example, the format specification:

FOQ'\MT' = ll (" Resul t : " , " <I| , I 5’ " >ll , " <I| , I 5’ " >ll) L}
can be written more concisely using a group specification:
FORMAT = ' ("Result: ", 2("<",15,">"))"

If the repeat count is 1 or is not given, the parentheses serve only to group format
codes for use in format reversion (discussed in the next section).

Field Separators

sisafield separator. A field separator consists of one or more commas (,) and/or
slash record terminators (/). The only restriction is that two commas cannot occur
side-by-side.

Building IDL Applications Using Explicitly Formatted Input/Output

168 Chapter 8: Files and Input/Output

The arguments provided in a call to aformatted input/output routine are called the
argument list. The argument list specifies the data to be moved between memory and
thefile. All data are handled in terms of basic IDL components. Thus, an array is
considered to be a collection of scalar data elements, and a structure is processed in
terms of its basic components. Complex scalar values are treated as two floating-
point values.

Rules for Explicitly Formatted Input/Output

IDL uses the following rules to process explicitly formatted input/output:

1. Traversetheformat string from left to right, processing each record terminator
and format code until an error occurs or no dataisleft in the argument list. The
comma field separator serves no purpose except to delimit the format codes.

2. Itisan eror to specify an argument list with aformat string that does not
contain aformat code that transfers datato or from the argument list because
an infinite loop would resullt.

3. When a dash record terminator (/) is encountered, the current record is
completed, and anew oneis started. For output, this meansthat anew lineis
started. For input, it means that the rest of the current input record is ignored,
and the next input record is read.

4. When aformat code that does not transfer data to or from the argument list is
encountered, process it according to its meaning. The format codes that do not

Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 169

transfer datato or from the argument list are summarized in the following

table;

Code

Action

Quoted String

On output, the contents of the string are written out. On input,
quoted strings are ignored.

The colon format code in aformat string terminates format
processing if no more items remain in the argument list. It hasno
effect if data still remainson thelist.

On output, if a$ format code is placed anywhere in the format
string, the new lineimplied by the closing parenthesis of the
format string is suppressed. On input, the $ format codeis
ignored.

nH

FORTRAN-style Hallerith string. Hollerith strings are treated
exactly like quoted strings.

nX

Skips n character positions.

n

Tab. Setsthe character position of the next item in the current
record.

TLn

Tab Left. Specifies that the next character to be transferred to or
from the current record is the n-th character to the left of the
current position.

TRn

Tab Right. Specifies that the next character to be transferred to or
from the current record is the n-th character to the right of the
current position.

Table 8-4: Format Codes that do not Transfer Data

5. When aformat code that transfers data to or from the argument list is
encountered, it is matched up with the next datum in the argument list. The

Building IDL Applications

Using Explicitly Formatted Input/Output

170 Chapter 8: Files and Input/Output

format codes that transfer datato or from the argument list are summarized in
the following table:

Code Action

A Transfer character data.

C0 Transfer calendar (Julian date and/or time) data.

D Transfer double-precision, floating-point data.

E Transfer floating-point data using scientific (exponential)
notation.

F Transfer floating-point data.

G Use F or E format depending on the magnitude of the value being
processed.

I Transfer integer data.

O Transfer octal data.

Q Obtain the number of charactersin the input record remaining to
be transferred during aread operation. In an output statement, the
Q format code has no effect except that the corresponding
input/output list element is skipped.

z Transfer Hexadecimal data.

Table 8-5: Format Codes that Transfer Data

6. Oninput, read datafrom the file and format it according to the format code. If
the datatype of the input data does not agree with the data type of the variable
that isto receive the result, do the type conversion if possible; otherwise, issue
atype conversion error and stop.

7. On output, write the data according to the format code. If the data type does
not agree with the format code, do the type conversion prior to doing the
output if possible. If the type conversion is not possible, issue atype
conversion error and stop.

8. If thelast closing parenthesis of the format string is reached and there are no
data left on the argument list, then format processing terminates. If, however,
there are till datato be processed on the argument list, then part or all of the
format specification isreused. This processis called format reversion.

Using Explicitly Formatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 171

Format Reversion

In format reversion, the current record is terminated, a new oneisinitiated, and
format control reverts to the group repeat specification whose opening parenthesis
matches the next-to-last closing parenthesis of the format string. If the format does
not contain a group repeat specification, format control returns to the initial opening
parenthesis of the format string. For example, the IDL command:

PRINT, FORMAT = '("The values are: ", 2("<", 11, ">"))', $
| NDGEN(6)

resultsin the output

The val ues are: <0><1>
<2><3>
<4><5>

The process involved in generating this output is as follows:
1. Output the string “The values are: .

2. Process the group specification and output the first two values. The end of the
format specification is encountered, so end the output record. Data are
remaining, so move back to the group specification

2("<", 11, ">")
by format reversion.

3. Repeat Step 2 until no data remain. End the output record. Format processing
is complete.

Building IDL Applications Using Explicitly Formatted Input/Output

172 Chapter 8: Files and Input/Output

Format Codes

“A” Format Code

The A format code transfers character data. The format is
[nTA[W
where:

n—isan optional repeat count (1 < n < 32767) specifying the number of times the
format code should be processed. If nisnot specified, arepeat count of oneis used.

w —isan optional width (1 < w < 256) specifying the number of charactersto be
transferred. If wis not specified, the entire string is transferred. On output, if wis
greater than the length of the string, the string is right justified. On input, IDL strings
have dynamic length, so w specifies the resulting length of input string variables.

For example, the IDL statement,

PRI NT, FORMAT = ' (A6)', '123456789'
generates the following output:

123456

Note
While an IDL string variable can hold up to 64 Kbytes of information, the buffer
than handles input at the IDL command prompt is limited to 255 characters. If for
some reason you need to create a string variable longer than 255 characters at the
IDL command prompt, split the variable into multiple sub-variables and combine
them with the “+" operator:

var = varl+var2+var3

Thislimit only affects string constants created at the IDL command prompt.

“:" Format Code

The colon format code terminates format processing if there are no more data
remaining in the argument list. For example, the IDL statement,

PRI NT, FORVAT = " (6(11, :, ", "))', | NDGEN6)

will output the following comma-separated list of integer values:

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 173

0, 1, 2, 3, 4, 5

The use of the colon format code prevented a comma from being output following the
final item in the argument list.

“$” Format Code

When IDL completes output format processing, it normally outputs a newline to
terminate the output operation. However, if a“$” format code is found in the format
specification, this default newlineis not output. The “$” format codeis only used on
output; it isignored during input formatting. The most common use for the “$”
format code isin prompting for user input. For example, the IDL statements,

; Prompt for input. Suppress the carriage return.
PRINT, FORMAT = '($, "Enter value: ")’

; Read the response.
READ, VALUE

will prompt for input without forcing the user’s response to appear on a separate line
from the prompt. Under VMS, the “$” format code does not work with files opened
with carriage-return carriage control, which is the default for new files. However, it
does work with explicit or FORTRAN carriage control. FORTRAN carriage control
is described in “ Reading FORTRAN-Generated Unformatted Datawith IDL” on
page 224.

“F’"“D;” “E]” and “G” Format Codes

TheF, D, E, and G format codes are used to transfer floating-point values between
memory and the specified file. The format is

[n] F[w. d]

[n] D[w. d]
[n]E[w. d] or [n]E[w dEe]
[n]dw.d] or [n]d w. dEe]

where

n—isan optional repeat count (1 < n < 32767) specifying the number of times the
format code should be processed. If nis not specified, arepeat count of 1 is used.

w.d —is an optional width specification (1 <w< 256, 1 < d <w). Thevariablew
specifies the number of charactersin the externa field. For the F, D, and E format
codes, d specifies the number of positions after the decimal point. For the G format
code, d specifies the number of significant digits displayed.

Building IDL Applications Format Codes

174

Chapter 8: Files and Input/Output

e—isan optional width (1 < e < 256) specifying the width of exponent part of the
field. IDL ignoresthis value—it is allowed for compatibility with FORTRAN.

Oninput, the F, D, E, and G format codes all transfer w characters from the external
field and assign them as areal value to the corresponding input/output argument list
datum.

The F and D format codes are used to output values using fixed-point notation. The
valueisrounded to d decimal positions and right-justified into an external field that is
w characters wide. The value of w must be large enough to include a minus sign when
necessary, at least one digit to the left of the decimal point, the decimal point, and d
digitsto the right of the decimal point. The code D isidentical to F (except for its
default values for w and d) and existsin IDL primarily for compatibility with
FORTRAN.

The E format codeis used for scientific (exponential) notation. The value is rounded
to d decimal positions and right-justified into an external field that is w characters
wide. The value of w must be large enough to include a minus sign when necessary,
at least one digit to the left of the decimal point, the decimal point, d digitsto theright
of the decimal point, a plus or minus sign for the exponent, the character “¢€” or “E”,
and at least two characters for the exponent.

Note
IDL uses a standard 1/O function to format numbers and their exponents. Asa
result, different platforms may print different numbers of exponent digits.

The G format code uses the F output style when reasonable and E for other values,
but displays exactly d significant digits rather than d digits following the decimal
point.

On output, if the field provided is not wide enough, it isfilled with asterisks (*) to
indicate the overflow condition. If w is zero, the “ natural” width for the valueis
used—the value is read or output using a default format without any leading or
trailing whitespace, in the style of the C standard input/output library pri ntf (3S)
function. See “C printf-Style Quoted String Format Code” on page 187 for more
information on C pri nt f -style formatting.

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 175

If w, d, or e are omitted, the values specified in the following table are used.

Data Type w d e
Float, Complex 15 7 2 (3 for Windows)
Double 25 16 2 (3 for Windows)
All Other Types 25 16 2 (3 for Windows)

Table 8-6: Floating Format Defaults

Using avalue of zero for the w parameter is useful when reading tables of datain
which individual elements may be of varying lengths. For example, if your data
reside in tables of the following form:

26.01 92.555 344.2
101.0 6.123 99. 845
23.723 200.02 141.93

setting the format to
FORMAT = ' (3F0)'
ensures that the correct number of digits are read or output for each element.

Normally, the case of the format code isignored by IDL. However, the case of the E
and G format codes determines the case used to output the exponent in scientific
notation. The following table gives examples of several floating-point formats and
the resulting output.

Format Internal Value Formatted Output
F 100.0 bbbb100.0000000
F 100.0D bbbbb100.0000000000000000
F10.0 100.0 bbbbbb100.
F10.1 100.0 bbbbb100.0
F10.4 100.0 bb100.0000
F2.1 100.0 o

Table 8-7: Floating-Point Output Examples (“b” represents a blank space)

Building IDL Applications Format Codes

176 Chapter 8: Files and Input/Output

Format Internal Value Formatted Output
elld 100.0 b1.0000e+02
1.0000e+002 (Windows)

Note that “€10.4” would not work on
Windows because the extra“0”
added after the “€” makes the string
longer than 10 characters.

El11.4 100.0 b1.0000E+02
1.0000E+002 (Windows)
g10.4 100.0 bbbbb100.0
g10.4 10000000.0 b1.000e+07
1.000e+007 (Windows)
G104 10000000.0 b1.000E+07
1.000E+007 (Windows)

Table 8-7: Floating-Point Output Examples (“b” represents a blank space)
“1 “0O, and “Z” Format Codes

Thel, O, and Z format codes are used to transfer integer values to and from the
specified file. The | format code is used to output decimal values, O is used for octal
values, and Z is used for hexadecimal values.

Theformat is as follows:
[N [wW or[n]l[wm
[(MAawW or [nQwm
[N Z[W] or [N Z[w.n|

where

n—isan optional repeat count (1 < n < 32767) specifying the number of times the
format code should be processed. If nis not specified, arepeat count of 1 isused.

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 177

w —isan optional integer value (1 < w < 256) specifying the width of thefield in
characters. The default values used if w is omitted are specified in the following

table:
Data Type w
Byte, Int, Ulnt 7
Long, ULong, Float 12
Long64, ULong64 22
Double 23
All Other Types 12

Table 8-8: Integer Format Defaults

If the field provided is not wide enough, it is filled with asterisks (*) to indicate the
overflow condition. If wis zero, the “natural” width for the value is used—the value
isread or output using adefault format without any leading or trailing white space, in
the style of the C standard input/output library pri nt f (3S) function. See“C printf-
Style Quoted String Format Code” on page 187 for more information on C pri nt f -
style formatting.

Note that using a value of zero for the w parameter is useful when reading tables of
datain which individua elements may be of varying lengths. For example, if your
datareside in tables of the following form:

26 92 344
101 6 99
23 200 141

setting the format to
FORMAT = ' (310)"
ensures that the correct number of digits are read or output for each element.

m— On output, m specifies the minimum number of nonblank digits required
(1 <m< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero,
the externa field is blank filled.

Building IDL Applications Format Codes

178 Chapter 8: Files and Input/Output

Normally, the case of the format code isignored by IDL. However, the case of the Z
format codes determines the case used to output the hexadecimal digits A-F. The
following table gives examples of severa integer formats and the resulting output.

Format Internal Formatted
Value Output

I 3000 bbb3000
16.5 3000 b03000
15.6 3000 *Rkk K
12 3000 o
O 3000 bbb5670
06.5 3000 b05670
05.6 3000 *kkkk
02 3000 >
z 3000 bbbbbb8
z 3000 bbbbBB8
Z6.5 3000 b00bb8
Z5.6 3000 *kkkk
z2 3000 >

Table 8-9: Integer Output Examples (“b” represents a blank space)

“Q” Format Code

The Q format code returns the number of charactersin the input record remaining to
be transferred during the current read operation. It isignored during output
formatting. Format Q is useful for determining how many characters have been read
on aline. For example, the following IDL statements count the number of characters
in file demo.dat:

;Open file for reading.
OPENR, 1, "denv.dat"

;Create a longword integer to keep the count.
N = OL

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 179

: Count the characters.
VWH LE(NOT EOF(1)) DO BEG N

READF, 1, CUR, FORMAT = '(qg)' & N= N+ CUR
END

; Report the result.
PRI NT, FORMAT = '("counted", N, "characters.")'

:Close file.
CLCSE, 1

Quoted String and “H” Format Codes

On output, any quoted strings or Hollerith constants are sent directly to the output.
On input, they are ignored. For example, the IDL statement,

PRI NT, FORVAT = '("Value: ", 10)', 23
resultsin the following output:

Val ue: 23

Notice the use of single quotes around the entire format string and double quotes
around the quoted string inside the format. This is necessary because we are
including quotes inside a quoted string. It would have been equally correct to use
double quotes around the entire format string and single quotes internally. Another
way to specify the string is with a Hollerith constant as follows:

PRI NT, FORVAT = '(7Hvalue: , 10)', 23
The format for aHollerith constant is:
nHcico c3 ...cn
where
n —isthe number of charactersin the constant (1 < n < 255).

¢; — isthe characters that make up the constant. The number of characters must agree
with the value provided for n.

See “ C printf-Style Quoted String Format Code” on page 187 for an aternate form of
the Quoted String Format Code that supports C pri nt f -style capabilities.

“T” Format Code

The T format code specifies the absolute position in the current record. The format is
Tn

Building IDL Applications Format Codes

180 Chapter 8: Files and Input/Output

where

n —isthe absolute character position within the record to which the current position
should be set (1 < n< 32767).

T —differsfromthe TL, TR, and X format codes primarily in that it requires an
absolute position rather than an offset from the current position. For example,

PRI NT, FORMAT = '("First", 20X, "Last", T10, "Mddle")"
produces the following output:
Fi r st bbbbM ddI ebbbbbbbbbbLast

where “b” represents ablank space.
“TL” Format Code

The TL format code moves the current position in the external record to the left. The
format is
TLn

where

n —isthe number of characters to move left from the current position (1< n<
32767). If the value of n is greater than the current position, the current position is
moved to column one.

TL — isused to move backwardsin the current record. It can be used on input to read
the same data twice or on output to position the output nonsequentially. For example,

PRINT, FORMAT = '("First", 20X, “Last", TL15, “Mddle")"
produces the following output:
Fi r st bbbbbbbbbMm ddi ebbbbbLast

where “b” represents a blank space.
“TR” and “X” Format Codes

The TR and X format codes move the current position in the record to the right. The
formatis

TRn
nX

where

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 181

n—isthe number of charactersto skip (1 < n < 32767). On input, n charactersin the
current input record will be passed over. On output, the current output positionis
moved n characters to the right.

The TR or X format codes can be used to |eave whitespace in the output or to skip
over unwanted data in the input. For example,

PRINT, FORMAT = '("First", 15X, "Last")'
or

PRINT, FORMAT = '("First", TRL5, "Last")'
results in the following output:

Fi r st bbbbbbbbbbbbbbbLast
where “b” represents ablank space.

These two format codes differ in one way. Using the X format code at the end of an
output record will not cause any characters to be written unlessiit is followed by
another format code that causes charactersto be output. The TR format code always
writes charactersin this situation. Thus,

PRINT, FORMAT = '("First", 15X)'
does not leave 15 blanks at the end of the line, but the following statement does:
PRI NT, FORMAT = '("First", 15TR)'

“C()” Format Code

The C() format code is used to transfer calendar (Julian date and/or time) data. The
format is

[nfC([co Cqy-- - cxl)
where;

n—isan optional repeat count (1 < n < 32767) specifying the number of times the
format code should be processed. If nis not specified, arepeat count of 1 is used.

C; — represents optional calendar format subcodes, or any of the standard format
codesthat are allowed within a calendar specification, as described below. If no ¢; are
provided, the data will be transferred using the standard 24-character system format
that includes the day, date, time, and year, as shown in this string:

Thu Aug 13 12:01:32 1979

For input, this default is equivalent to:

Building IDL Applications Format Codes

182

Chapter 8: Files and Input/Output

C(CDWA, X, CWbA, X, CDI, X, CHI, X, CM, X, CSI, CYI5)
For output, this default is equivalent to:

C(CDWA, X, CMbA, X, CDI2.2, X, CHI2.2, ":", CM2.2, ":", CSI2.2,
CYI 5)

Note
The C() format code represents an atomic data transfer. Nesting within the
parenthesesis not allowed.

Note
For input using the calendar format codes, asmall offset is added to each Julian date
to eliminate roundoff errors when calculating the day fraction from hours, minutes,
and seconds. This offset is given by the larger of EPS and EPS* Julian, where Julian
isthe integer portion of the Julian date, and EPS is the EPS field from MACHAR.
For typical Julian dates, this offset is approximately 6x107° (which corresponds to
5107 seconds). This offset ensuresthat if the Julian date is converted back to
hour, minute, and second, then the hour, minute, and second will have the same
integer values as were originally input.

Note
Caendar dates must be in the range 1 Jan 4716 B.C.E. to 31 Dec 5000000, which
corresponds to Julian values -1095 and 1827933925, respectively.

Calendar Format Subcodes

Thefollowing isalist of the subcodes allowed within the parenthesis of the C format
code:

“CMOA” subcodes

The CMOA subcodes transfers the month portion of adate as a string. The format for
an all upper case month string is:

CMOA[wi

The format for a capitalized month string is:
CVbA[W]

The format for an all lower case month string is:
CmoAl W

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 183

Note
The case of the'M’ and ‘O’ of these subcodes will be ignored on input, or if the
MONTHS keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256) specifying the number of characters of the
month name to be transferred. If wis not specified, three characters will be
transferred. If wisO, the natural length of the month nameistransferred. On output, if
w is greater than the natural length of the month name, the string will be right
justified.

“CMOI” subcode

The CMOI subcode transfers the month portion of adate as an integer. The format is
asfollows:

CMO[w or CMO[w m
where:

w—isan optional width (1 < w < 256) specifying the width of the field in characters.
The default widthis 2.

m— On output, m specifies the minimum number of nonblank digitsrequired (1< m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CDI"” subcode

The CDI subcode transfers the day portion of adate as an integer. The format is as
follows:

CDI[w] or CDI[w m
where:

w—isan optional width (1 < w < 256) specifying the width of thefield in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (1< m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

Building IDL Applications Format Codes

184

Chapter 8: Files and Input/Output

“CYI” subcode

The CY 1 subcode transfers the year portion of a date as an integer. The format is as
follows:

CYl[w] or CYI[wn]
where:

w—isan optiona width (1 < w < 256) specifying the width of thefield in characters.
The default width is 4.

m— On output, m specifies the minimum number of nonblank digits required (1 <m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CHI” subcodes

The CHI subcodes transfer the hour portion of adate as an integer. The format for 24
hour based integer is:

CH [w] or CHI[w nj

The format for a 12 hour based integer is:
Chi[w] or Chl[w.ni

For these subcodes:

w—isan optiona width (1 < w < 256) specifying the width of thefield in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digits required (1 <m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CMI” subcode

The CMI subcode transfers the minute portion of adate as an integer. The format is
asfollows:

CM[w or CM[w nj
where:

w—isan optional width (1 <w < 256) specifying the width of thefield in characters.
The default width is 2.

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 185

m— On output, m specifies the minimum number of nonblank digitsrequired (1< m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CSI” subcode

The CSI subcode transfers the seconds portion of a date as an integer. The format is
asfollows:

CSI[w or CSI[wn
where:

w—isan optional width (1 < w < 256) specifying the width of the field in characters.
The default width is 2.

m— On output, m specifies the minimum number of nonblank digitsrequired (1< m
< 256). Thefield is zero-filled on the left if necessary. If mis omitted or zero, the
external field is blank filled.

“CSF” subcode

The CSF subcode transfers the seconds portion of a date as a floating-point value.
The format is asfollows:

CSF[w. d]
where;

w.d —is an optional width specification (1 <w < 256, 1 < d<w). Thevariablew
specifiesthe number of charactersin the externa field; the default is5. The variabled
specifies the number of positions after the decimal point; the default is 2. The value
of wmust be large enough to include at least one digit to the left of the decimal point,
the decimal point, and d digitsto the right of the decimal point. On output, if thefield
provided is not wide enough, it isfilled with asterisks (*) to indicate the overflow
condition. If wis zero, the “natural” width for the value is used — the value is read or
output using a default format without any leading or trailing whitespace, in the style
of the C standard library printf (3S) function.

“CDWA" subcodes

The CDWA subcodes transfers the day of week portion of a dataas astring. The
format for an all upper case day of week string is:

CDVWA[Wi
The format for a capitalized day of week string is:

CDwWA[W

Building IDL Applications Format Codes

186

Chapter 8: Files and Input/Output

The format for an al lower case day of week string is:
CdwA[W]

Note
The case of the ‘D’ and ‘W’ of these subcodes will be ignored on input, or if the
DAYS OF WEEK keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256), specifying the number of characters of the
day of week name to be transferred. If wis not specified, three characters will be
transferred. If wis 0, the natural length of the day of week name is transferred. On
output, if wis greater than the natural length of the day of week name, the string will
be right justified.

“CAPA” subcodes

The CAPA subcodes transfers the am or pm portion of adate as a string. The format
for an all upper case AM or PM string is:

CAPA[W]

The format for a capitalized AM or PM string is:
CApAl W

The format for an al lower case AM or PM string is:
CapAl W]

Note
The case of thefirst ‘A’ and ‘P’ of these subcodes will beignored on input, or if the
AM_PM keyword for the current routine is explicitly set.

For these subcodes:

w —isan optional width (0 < w < 256), specifying the number of characters of the
AM or PM string to be transferred. If wis not specified, two characters will be
transferred. If wis O, the natural length of the AM or PM string is transferred. On
output, if wis greater than the natural length of the AM or PM string, the string will
be right justified.

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 187

Standard Format Codes Allowed within a Calendar Specification

None of these subcodes are allowed outside of a C() format specifier. In addition to
the subcodes listed above, only quoted strings, “TL”, “TR”, and “ X” format codes are
allowed inside of the C() format specifier.

Example:
To print the current date in the default format:
PRI NT, FORMAT=' (C())', SYSTIME(/JULI AN)
The printed result should look something like:
Fri Aug 14 12:34:14 1998
Example:

To print the current date as atwo-digit month value followed by adash followed by a
two-digit day value:

PRI NT, FORMAT=' (C(CMO,"/",CDI))", SYSTI ME(/JULI AN)
The printed result should look something like:

8/ 14
Example:

To print the current time in hours, minutes, and floating-point seconds, all zero-filled
if necessary, and separated by colons:

PRI NT, FORMAT= $
"(C(CHI2.2,":",CM2.2,":", CSF5. 2, TL5, CSI 2. 2)) "', SYSTI ME(/ JULI AN)

The printed result should look something like:
09:59:07.00

Note that to do zero-filling for the floating-point seconds, it is necessary to use “TL”
(tab left) and then overwrite the integer portion.

C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functionssuch aspri nt f () and
sprintf().Most programmers are very familiar with such formats. In this style,

Building IDL Applications Format Codes

188

Chapter 8: Files and Input/Output

text and format codes (prefixed by a % character) are intermixed in a single string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and writein
common simple cases.

IDL supportsthe use of pri nt f -style formats within format specifications, using a
special variant of the Quoted String Format Code (discussed in “Quoted String and
“H” Format Codes” on page 179) in which the opening quote starts with a %
character (e.g. %" or %' rather than " or *). The presence of this % before the opening
guote (with no whitespace between them) tellsIDL that thisisapri nt f -style quoted
string and not a standard quoted string.

Asasimple example, consider the following IDL statement that uses normal quoted
string format codes:

PRI NT, FORMAT=' ("I have ", 10, " nonkeys, ", A ".")', $
23, 'Scott’

Executing this statement yields the output:
I have 23 nonkeys, Scott.

Using apri nt f -style quoted string format code instead, this statement could be
written:

PRI NT, FORMAT=' (%'| have % nonkeys, %.")', 23, 'Scott'

These two statements are completely equivalent in their action. In fact, IDL compiles
both into an identical internal representation before processing them.

Thepri nt f -style quoted string format codes can be freely mixed with any other
format code, so hybrid formats like the following are allowed:

PRI NT, $
FORMAT=' (% | have % nonkeys, %,", " and ", 10, " parrots.")',$
23, 'Scott', 5

This generates the output:
I have 23 nonkeys, Scott, and 5 parrots.
Supported “%” Formats

The following table lists the % format codes allowed within apri nt f -style quoted
string format code, as well astheir correspondence to the standard format codes that
do the same thing. In addition to the format codes described in the table, the special

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output

189

sequence %% causes a single % character to be written to the output. This% s
treated as aregular character instead of as aformat code specifier.

Normal Style Described

Printf-Style Normal-Style in Section

%[w.d]e or %[w.d|E ew.d] or E[w.d] “F' D, “E; and“G”
Format Codes’ on page 173

%[w]d or %[w]D I{w] ““17*0," and “Z" Format
%[w.m]|D or %[w.m|D I[w.d] Codes’ on page 176
%[w]i or %[w]l [[w]
%[w.m]i or %[w.m]l ITw.d]
%[w.d]f or %[w.d]F Flw.d] ““F'“D,” “E” and“G”

Format Codes’ on page 173

%[w.d]g or %[w.d]G

g[w.d] or G[w.d]

““F’“D,” “E and“G”
Format Codes’ on page 173

%[w]o or %[w]O Oo[w] ““1, %0, and “Z” Format

%[w.mlo or %[w.m]O | Ofw.d] Codes’ on page 176

%[w]s or %[w]S Alw] ““A” Format Code” on
page 172

%[w]x or %[w]X Z[w] ““1,7 0, and “Z” Format

%[W.m]x or Y6[w.m] X Z[w.d] Codes” on page 176

%[w]z or %[w]Z Z[w]

%[w.m]z or %[w.m|Z Z[w.d]

Table 8-10: Supported “%” Formats

Asindicated in the above table, there is a one to one correspondence between each
pri nt f -style % format code and one of the normal format codes documented earlier
in this chapter. When reading this table, please keep the following considerationsin

mind:

e The%d (or %D) format isidentical to the %i (or %l) format. Note that %D
does not correspond to the normal-style D format.

Building IDL Applications

Format Codes

190

Chapter 8: Files and Input/Output

Thew, d, and e parameters listed as optional parameters (i.e. between the
square brackets, []) are the same values documented for the normal-style
format codes, and behave identically to them.

The default value for the w parameters for pri nt f -style formatting is 0,
meaning that pri nt f -style output produces “ natural” width by default. For
example, a%d format code corresponds to a normal format code of 10 (not I,
which would use the default value for w based on the datatype). Similarly, a
%e format code corresponds to a normal format code of €0 (not €).

The E and G format codes allow the following styles for compatibility with
FORTRAN:

E[w. dEe] or e[w. dEe]
G w. dEe] or g[w dEe]

These styles are not available using the pri nt f -style format codes. In other
words, the following formats are not allowed:

% w. dEe] E or % w. dEe] e
% w. dEe] G or % w. dEe] g

Normal-style format codes allow repetition counts (e.g. 510). The
pri nt f -style format codes do not allow this. Instead, each pri nt f -style
format code has an implicit repetition count of 1.

Like normal format codes (but unlike the C language pri nt f () function),
pri nt f -styleformat codes are allowed to be upper or lower case (e.g. %d and
%D mean the same thing). Whether or not case has an influence on the
resulting output depends on the specific format code. The specific behavior is
the same as with the normal-style version for each code.

Supported “\" Character Escapes

The C programming language allows “escape sequences’ that start with the
backslash character, \, to appear within strings. These escapes are used in several

way’s.
1

2.

Format Codes

To specify characters that have no printed representation. For example, \n
means linefeed, and \r means carriage return.

To remove any special meaning that a character might normally have. For
example, \" allows you to create a string containing a double-quote character
even though double-quote normally delimits a string. Note that backslash can
also be used to escape itself, so "\\" corresponds to a string containing asingle
backslash character.

Building IDL Applications

Chapter 8: Files and Input/Output 191

3. Tointroduce arbitrary charactersinto a string using octal or hexadecimal
notation.

Although IDL does not normally support backslash escapes within strings, the
escapes described in the following table are alowed within pri nt f -style quoted
string format codes. If a character not specified in thistable is preceded by a
backslash, the backslash is removed and the character is inserted into the output
without any special interpretation. Thismeansthat \" putsasingle" character into the
output and that " does not terminate the string constant. Another useful exampleis
that \% causes a single % character to be placed into the output without starting a
format code. Hence, \% and %% mean the same thing: a single % character with no
special meaning.

Sgéﬁiﬁie ASCII code
\A\a BEL (7B)
\B \b Backspace (8B)
\F\f Formfeed (12B)
\N \n Linefeed (10B)
\R\r Carriage Return (13B)
\T \t Horizontal Tab (9B)
\V \v Vertical Tab (11B)
\ooo Octal value ooo (Octal value of 1-3 digits)
\xhh Hexadecimal value xx (Hex value of 1-2 digits)

Table 8-11: Supported "\" Character Escapes

Differences Between C printf() and IDL printf-Style Formats

IDL'spri nt f -style quoted string format code is very similar to asimplified C
language pri nt f () format string. However, there are important differences that an
experienced C programmer should be aware of:

e ThelDL PRINT and PRINTF procedures implicitly add an end-of-line
character to the end of the line (unless suppressed by use of the $ format code).
Hence, the use of \n at the end of the format string to end the line is neither
necessary nor recommended.

Building IDL Applications Format Codes

192

Chapter 8: Files and Input/Output

Only the % format sequences listed in the table under “ Supported “ %"
Formats’ on page 188 are understood by IDL. Most C pri nt f functions
accept more codes than these, but those codes are not necessary in IDL.

For example, the C pri nt f /scanf functions require the use of the %u format
code to indicate an unsigned value, and aso use type modifiers (h, I, II) to
indicate the size of the data being processed. IDL uses the type of the
arguments being substituted into the format to determine this information.
Therefore, theu, h, |, and || codes are not required in IDL and are not accepted.

The % and \ sequencesin IDL pri nt f -style strings are case-insensitive. C
printf iscase-sensitive (e.g. \n and \N do not both mean the linefeed
character asthey doin IDL).

TheCprintf function allows the use of %n$d notation to specify that
arguments should be substituted into the format string in a different order than
they arelisted. IDL does not support this.

TheCprintf function allows the use of %*d notation to indicate that the
field width will be supplied by the next argument, and the argument following
that supplies the actual value. IDL does not support this.

TheCprintf function allows the use of %-wd notation to specify that the
data should be left justified in afield of w characters. IDL does not support this
notation.

IDL pri nt f -style formats allow %z for hexadecimal output as well as %x.
TheCprintf () function does not understand %z. This deviation from the
usual implementation isallowed by IDL because IDL programmers are used to
treating Z as the hexadecimal format code.

Example: Reading Tables of Formatted Data

IDL explicitly formatted input/output has the power and flexibility to handle almost
any kind of formatted data. A common use of explicitly formatted input/output
involves reading and writing tables of data. Consider a data file containing employee
datarecords. Each employee has a name (String, 32 columns) and the number of
years they have been employed (Integer, 3 columns) on the first line. The next two
lines contain each employee’s monthly salary for the last twelve months. A sample
file named employee.dat with this format might look like the following:

Format Codes

Bul | wi nkl e 10

1000.0 9000. 97 1100.0 2000.0
5000. 0 3000.0 1000. 12 3500.0 6000. 0 900.0
Bori s 11

400.0 500.0 1300. 10 350.0 745.0 3000.0

Building IDL Applications

Chapter 8: Files and Input/Output 193

200.0 100.0 100.0 50.0 60. 0 0.25

Nat asha 10

950. 0 1050. 0 1350.0 410.0 797.0 200. 36

2600.0 2000.0 1500. 0 2000.0 1000. 0 400. 0

Rocky 11

1000. 0 9000. 0 1100.0 0.0 0.0 2000. 37

5000. 0 3000. 0 1000. 01 3500. 0 6000. 0 900. 12

Thefollowing IDL statements read data with the above format and produce a
summary of the contents of the file:

; Open data file for input.
OPENR, 1, 'enployee. dat'

;Create variables to hold the nane, nunber of years, and nmonthly
;sal ary.
nane = '' & years = 0 & salary = FLTARR(12)

; Qut put a heading for the sumary.

PRI NT, FORMAT=' ("Name", 28X, "Years", 4X, "Yearly Salary")'

; Note: The actual dashed line is |onger than is shown here.
PRI NT‘ 'z

; Loop over each enpl oyee.
WH LE (NOT EOF(1)) DO BEG N

; Read the data on the next enployee.

READF, 1, $

FORMAT = ' (A32,13,2(/,6F10.2))', name, years, salary
; Qut put the enployee information. Use TOTAL to sumthe nonthly
;salaries to get the yearly salary.

PRI NT, FORMAT=' (A32,15,5X F10.2)', name, years, TOTAL(sal ary)
ENDVWHI LE
CLCSE, 1

The output from executing these statements on employee.dat is as follows:

Nane Year s Yearly Sal ary
Bul I wi nkl e 10 32501. 09
Borris 11 6805. 35
Nat asha 10 14257. 36
Rocky 11 32500. 50

Building IDL Applications Format Codes

194 Chapter 8: Files and Input/Output

Example: Reading Records that Contain Multiple Array
Elements

Frequently, data are written to files with each record containing single elements of
more than one array. One example might be afile consisting of observations of
altitude, pressure, temperature, and velocity with each line or record containing a
value for each of the four variables. Because IDL has no equivalent of the
FORTRAN implied DO list, specia procedures must be used to read or write this
type of file.

Thefirst approach, which isthe simplest, may be used only if all of the variables have
the same data type. An array is created with as many columns as there are variables
and as many rows as there are elements. The data are read into this array, the array is
transposed storing each variable as arow, and each row is extracted and stored into a
variable which becomes a vector. For example, the FORTRAN program which writes
the data and the IDL program which reads the data are as follows:

FORTRAN Write:

DI MENSI ON ALT(100) , PRES(100) , TEMP(100) , VELQ(100)
OPEN (UNIT = 1, STATUS=' NEW, FILE=' TEST')
WR TE(1,' (4(1x, g15.5))")

(ALT(1), PRES(1), TEMP(1), VELQ(1), I =1, 100)

IDL Read:

;Open file for input.
OPENR, 1, 'test'

; Define variable (NVARS by NOBS).
A = FLTARR(4, 100)

: Read t he data.
READF, 1, A

; Transpose so that columms becone rows.
A = TRANSPOSE(A)

i Extract the vari abl es.

ALT = Al *, 0]
PRES = A[*, 1]
TEMP = A[*, 2]

VELO = Al *, 3]

Note that this same example may be written without the implied DO list, writing al
elements for each variable contiguously and simplifying matters considerably:

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 195

FORTRAN Write:

DI MENSI ON' ALT(100) , PRES(100) , TEMP(100) , VELQ(100)
OPEN (UNIT = 1, STATUS=' NEW, FILE=' TEST)
WR TE (1,' (4(1x, Gl5.5))') ALT, PRES, TEMP, VELO

IDL Read:

: Defi ne vari abl es.

ALT = FLTARR(100)

PRES = ALT & TEMP = ALT & VELO = ALT
OPENR, 1, 'test'

READF, 1, ALT, PRES, TEMP, VELO

A different approach must be taken when the columns contain different data types or
the number of lines or records are not known. This method involves defining the
arrays, defining a scalar variable to contain each datum in one record, then writing a
loop to read each line into the scalars, and then storing the scalar values into each
array. For example, assume that afifth variable, the name of an observer which is of
string type, is added to the variable list. The FORTRAN output routine and IDL input
routine are as follows:

FORTRAN Write:

DI MENSI ON' ALT(100) , PRES(100) , TEMP(100) , VELQ(100)
CHARACTER * 10 CBS(100)
OPEN (UINIT = 1, STATUS = 'NEW, FILE = ' TEST')
WRI TE (1,' (4(1X Gl5.5),2X A)')

(ALT(1), PRES(1), TEMP(1), VELQ(1), OBS(1), | =1, 100)

IDL Read:

; Access file. Read files containing from1 to 200 records.
OPENR, 1, 'test'

; Define vector, nake it |arge enough for the biggest case.
ALT = FLTARR(200)

; Define other vectors using the first.
PRES = ALT & TEMP = ALT & VELO = ALT

;Define string array.
OBS = STRARR(200)

; Define scalar string.
aBSS =

;lnitialize counter.
I =0

Building IDL Applications Format Codes

196 Chapter 8: Files and Input/Output

VWH LE NOT EOF(1) DO BEG N
:Read scal ars.
READF, 1, $

FORMAT = ' (4(1X, Gl5.5), 2X, A10)', $
ALTS, PRESS, TEMPS, VELOS, OBSS

;Store in each vector.
ALT[I] = ALTS & PRES[I] = PRESS & TEMP[I] = TEMPS
VELJ] = VELCS & OBS[I] = OBSS

;I ncrement counter and check for too many records.
IF 1 LT 199 THEN I =1 + 1 ELSE STOP, 'Too nmny records'
ENDWHI LE

If desired, after the file has been read and the number of observationsis known, the
arrays may be truncated to the correct length using a series of statements similar to
the following:

ALT = ALT[O: | - 1]

The above statement represents a worst case example. Reading is greatly simplified
by writing data of the same type contiguously and by knowing the size of thefile.
One frequently used technique isto write the number of observations into the first
record so that when reading the data the size is known.

Warning
It might be tempting to implement aloop in IDL which reads the data values
directly into array elements, using a statement such as the following:

FOR | = 0, 99 DO READF, 1, ALT[I], PRES[I], TEMP[I], VELJI]

This statement is incorrect. Subscripted elements (including ranges) are temporary
expressions passed as values to procedures and functions (READF in this example).
Parameters passed by value do not pass results back to the caller. The proper
approach isto read the data into scalars and assign the values to the individual array
elements asfollows:

A=0 &P=0 &T=0 &V-=0.
FOR | = 0, 99 DO BEG N

READF, 1, A, P, T, V

ALT[I] = A & PRES[I] = P & TEWP[I] = T & VELQ[I] = V
ENDFOR

Format Codes Building IDL Applications

Chapter 8: Files and Input/Output 197
Using Unformatted Input/Output

Unformatted input/output involves the direct transfer of data between afile and
memory without conversion to and from a character representation. Unformatted
input/output is used when efficiency isimportant and portability isnot an issue. It is
faster and requires less space than formatted input/output. IDL provides three
procedures for performing unformatted input/output:

READU

Reads unformatted data from the specified file unit.
WRITEU

Writes unformatted data to the specified file unit.
ASSOC

Maps an array structureto alogical file unit, providing efficient and convenient direct
access to data.

This section discusses READU and WRITEU, while ASSOC is discussed in
“Associated Input/Output” on page 209. The READU and WRITEU procedures
provide IDL’s basic unformatted input/output capabilities. They have the form:

READU, Unit, Var,, ..., Var,
WRI TEU, Unit, Var,, ..., Var,
where

Unit — Thelogical file unit with which the input/output operation will be performed.
Var; — One or more IDL variables (or expressions in the case of output).

The WRITEU procedure writes the contents of its arguments directly to thefile, and
READU reads exactly the number of bytesrequired by the size of its arguments. Both
cases directly transfer binary data with no interpretation or formatting.

Unformatted Input/Output of String Variables

Strings are the only basic IDL data type that do not have afixed size. A string
variable has a dynamic length that is dependent only on the length of the string
currently assigned to it. Thus, although it is always possible to know the length of the
other types, string variables are a special case. IDL uses the following rules to
determine the number of charactersto transfer:

Building IDL Applications Using Unformatted Input/Output

198 Chapter 8: Files and Input/Output

Input

Input enough bytes to fill the original length of the string. The length of the resulting
string is truncated if the string contains a null byte.

Output

Output the number of bytes contained in the string. This number is the same number
returned by the STRLEN function and does not include a terminating null byte.

Note that these rulesimply that when reading into a string variable from afile, you
must know the length of the original string so asto be ableto initialize the destination
string to the correct length. For example, the following IDL statements produce the
following output, because the receiving variable A was not long enough.

;Open a file.
OPENW 1, 'tenp.tnp'

;Wite an 11-character string.
WRITEU, 1, '"Hello Wrld'

;Rewind the file.
PONT_LUN, 1, O

; Prepare a nine-character string.
A= :

; Read back in the string.
READU, 1, A

; Show what was i nput.
PRI NT, A

CLCSE, 1
produce the following, because the receiving variable A was not long enough:
Hel l o Wor

The only solution to this problem is to know the length of the string being input. The
following IDL statements demonstrate a useful “trick” for initializing stringsto a
known length:

;Open a file.
OPENW 1, 'tenp.tnp'

;Wite an 11-character string.
WRITEU, 1, '"Hello Wrld'

Using Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 199

:Rewind the file.
PONT_LUN, 1, O

;Create a string of the desired length initialized with bl anks.

; REPLI CATE creates a byte array of 11 elenents, each el enent
;initialized to 32, which is the ASCII code for a bl ank. Passing
;this byte array to STRING converts it to a scalar string
;containing 11 bl anks.

A = STRI NG REPLI CATE(32B, 11))

;Read in the string.
READU, 1, A

; Show what was i nput.
PRI NT, A

CLCSE, 1

This exampl e takes advantage of the special way in which the BY TE and STRING
functions convert between byte arrays and strings. See the description of the BY TE
and STRING functions for additional details.

Example: Reading C-Generated Unformatted Data with IDL

The following C program produces a file containing employee records. Each record
stores the first name of each employee, the number of years he has been employed,
and his salary history for the last 12 months.

#i ncl ude <stdio. h>

mai n()
{
static struct rec {
char name[32]; /* Enployee's nane */
int years; [* # of years with conpany */
float salary[12]; /* Salary for last 12 nonths */
} enployees[] = {
{{,tu e ytw ittt Nk ey, 10,
{1000. 0, 9000.97, 1100.0, 0.0, 0.0, 2000.0,
5000. 0, 3000.0, 1000.12, 3500.0, 6000.0, 900.0} },{
{'B,'o ,'r','r', i, 's"}, 11,
{400.0, 500.0, 1300.10, 350.0, 745.0, 3000.0,
200.0, 100.0, 100.0, 50.0, 60.0, 0.25} },
{{'N,"@,"t",’a","'s","h","a}, 10
{950.0, 1050.0, 1350.0, 410.0, 797.0, 200.36,
2600. 0, 2000.0, 1500.0, 2000.0, 1000.0, 400.0} 1},
{{'R,"' 0" ,'¢c,"k',"y'"}, 11,
{1000. 0, 9000.0, 1100.0, 0.0, 0.0, 2000.37,

Building IDL Applications Using Unformatted Input/Output

200 Chapter 8: Files and Input/Output

5000. 0, 3000.0, 1000.01, 3500.0, 6000.0, 900.12}}
b

FI LE *outfile;

outfile = fopen("data.dat", "w');
(void) fwite(enpl oyees, sizeof(enployees), 1, outfile);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the employee records. The
following IDL statements can be used to read and print thisfile:

;Create a string with 32 characters so that the proper nunber of
;characters will be input fromthe file. REPLICATE is used to
;Create a byte array of 32 el enents, each containing the ASCI| code
;for a space (32). STRING turns this byte array into a string
;containing 32 bl anks.

STR32 = STRI NG REPLI CATE(32B, 32))

;Create an array of four enployee records to receive the input
; dat a.
A = REPLI CATE({ EMPLOYEES, NAME: STR32, YEARS:OL, $

SALARY: FLTARR(12)}, 4)

;Open the file for input.
OPENR, 1, 'data.dat'’

: Read t he dat a.
READU, 1, A

CLCSE, 1

; Show t he resul ts.
PRI NT, A

Executing these IDL statements produces the following output:

{ Bullwinkle 10

1000. 00 9000. 97 1100. 00 0. 00000 0. 00000 2000. 00
5000. 00 3000. 00 1000. 12 3500. 00 6000. 00 900. 000
}{Borris 11

400. 000 500. 000 1300. 10 350. 000 745. 000 3000. 00
200. 000 100. 000 100. 000 50. 0000 60. 0000 0. 250000
}{ Natasha 10

950. 000 1050. 00 1350. 00 410. 000 797. 000 200. 360
2600. 00 2000. 00 1500. 00 2000. 00 1000. 00 400. 000
}{ Rocky 11

1000. 00 9000. 00 1100. 00 0. 00000 0. 00000 2000. 37
5000. 00 3000. 00 1000. 01 3500. 00 6000. 00 900. 120

}
Using Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 201

Example: Reading IDL-Generated Unformatted Data with C

The following IDL program creates an unformatted data file containing a5 x 5 array
of floating-point values:

;Open a file for output.
OPENW 1, 'data.dat'

;Wite 5x5 array with each elenment set to its 1-di nensional index.
WRI TEU, 1, FINDGEN(5, 5)

CLCSE, 1
Thisfile can be read and printed by the following C program:

#i ncl ude <stdio. h>
mai n()

float data[5][5];
FILE *infile;, int i, j;
infile = fopen("data.dat", "r");
(void) fread(data, sizeof(data), 1, infile);
(void) fclose(infile);
for (i =0; i <5; i++) {
for (j =0; j <5 j++) {
printf("98.1f", datal[il[j]);

printf("\n");
}
}
}
Running this program gives the following output:
0.0 1.0 2.0 3.0
5.0 6.0 7.0 8.0

10.0 11.0 12.0 13.0 1
15.0 16.0 17.0 18.0 1
20.0 21.0 22.0 23.0 2

[cNeoNoNoNo]

Example: Reading a Sun Rasterfile from IDL

Sun computers use rasterfiles to store scanned images. This example shows how to
read such an image and display it using IDL. In the interest of keeping the example
brief, anumber of simplifications are made, no error checking is performed, and only
8-bit deep rasterfiles are handled. See the READ_SRF procedure (thefile
read_srf.prointheli b subdirectory of the IDL distribution) for a complete

Building IDL Applications Using Unformatted Input/Output

202

Chapter 8: Files and Input/Output

example. The format used for rasterfiles is documented in the C header file
/usr/include/rasterfile.h. That file provides the following information:

Each file starts with afixed header that describes the image. In C, this header is
defined asfollows:

struct rasterfil e{
int ras_magic; /* magic number */
int ras_width; /* width (pixels) of inage */
int ras_height; /* height (pixels) of imge */
int ras_depth; /* depth (1, 8, or 24 bits) */
int ras_length; /* length (bytes) of inmage */
int ras_type; /* type of file */
int ras_maptype; /* type of colormap */
int ras_maplength; /* length(bytes) of colormap */ };

The color map, if any, follows directly after the header information. The image data
follows directly after the color map.

Thefollowing IDL statements read an 8-hit deep image from thefiler as. dat :

;Define IDL structure that natches the Sun-defined rasterfile
;structure. A Cint variable on a Sun corresponds to an I DL LONG
cint.
h = {rasterfile, magic:0L, wdth:0L, height:0L, depth: OL, $

| engt h: OL, type: OL, maptype: OL, mapl ength: OL}

;Open the file, allocating a file unit at the sanme tine.
OPENR, unit, file, /GET_LUN

: Read the header infornmation.
READU, unit, h

;ls there a color nap?
IF ((h.maptype EQ 1) AND (h. naplength NE 0)) THEN BEG N

; Cal cul ate I ength of each vector.
mapl en = h. mapl engt h/ 3

;Create three byte vectors to hold the col or nap.
r=(g=(b=BYTARR(mapl en, /NOZERO)))

; Read the col or map.
READU, unit, r, g, b

ENDI F

;Create a byte array to hold inmage.
i mge = BYTARR(h.w dth, h.height, /NOQZERO

Using Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 203

; Read the inmmge.
READU, unit, inmage

; Free the previously-allocated Logical Unit Nunber and cl ose the

file.
FREE_LUN, unit

Building IDL Applications Using Unformatted Input/Output

204

Chapter 8: Files and Input/Output

Portable Unformatted Input/Output

Normally, unformatted input/output is not portable between different machine
architectures because of differencesin the way various machines represent binary
data. However, it is possible to produce binary files that are portable by specifying
the XDR keyword with the OPEN procedures. XDR (for eXternal Data
Representation) is a scheme under which all binary datais written using a standard
“canonical” representation. All machines supporting XDR understand this standard
representation and have the ability to convert between it and their own internal
representation.

XDR represents a compromise between the extremes of unformatted and formatted
input/output:

It isnot as efficient as purely unformatted input/output because it doesinvolve
the overhead of converting between the external and internal binary
representations.

It is till much more efficient than formatted input/output because conversion
to and from ASCII charactersis much more involved than converting between
binary representations.

It is much more portable than purely unformatted data, although it is still
limited to those machines that support XDR. However, XDR is freely
available and can be moved to any system.

XDR Considerations

The primary differences in the way IDL input/output procedures work with XDR
files, as opposed to files opened normally are as follows:

To use XDR, you must specify the XDR keyword when opening the file.

The only input/output data transfer routines that can be used with afile opened
for XDR are READU and WRITEU.

XDR converts between the internal and standard external binary
representations for data instead of simply using the machine's internal
representation.

Since XDR adds extra* bookkeeping” information to data stored in the file and
because the binary representation used may not agree with that of the machine
being used, it does not make sense to access an XDR file without using XDR.

Portable Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 205

OPENW and OPENU normally open files for both input and output. However,
XDR files can only be opened in one direction at atime. Thus, using these
procedures with the XDR keyword results in afile open for output only.
OPENRworksin the usua way.

Thelength of stringsis saved and restored along with the string. This means
that you do not have to initialize a string of the correct length before reading a
string from the XDR file. (Thisis necessary with normal unformatted
input/output and is described in “Using Unformatted Input/Output” on

page 197).

For efficiency reasons, byte arrays are transferred as a single unit; therefore,
byte variables must beinitialized to the correct number of elementsfor the data
to beinput, or an error will occur. For example, given the statements,

;Open a file for XDR output.
OPENW / XDR, 1, 'data.dat’

;Wite a 10-el ement byte array.
WRI TEU, 1, BI NDGEN(10)

;Close the file and re-open it for input.
CLCSE, 1 & OPENR, /XDR, 1, 'data.dat'

then the statement,

;Try to read the first byte only.
B = 0B & READU, 1, B

results in the following error:
% READU: Error encountered reading fromfile unit: 1.

Instead, it is necessary to read the entire byte array back in one operation using
a statement such as:

; Read the whol e array back at once.
B=BYTARR(10) & READU, 1, B

This restriction does not exist for other data types.

Under VMS, XDR is only possible with stream mode files.

IDL XDR Conventions for Programmers

IDL uses certain conventions for reading and writing XDR files. If your only use of
XDR isthrough IDL, you do not need to be concerned about these conventions
because IDL takes care of it for you. However, programmers who want to create
IDL-compatible XDR files from other languages need to know the actual XDR

Building IDL Applications Portable Unformatted Input/Output

206 Chapter 8: Files and Input/Output

routines used by IDL for various data types. The following table summarizes this

information.
Data Type XDR routine

Byte xdr_bytes()
Integer xdr_short()
Long xdr_long()
Float xdr_float()
Double xdr_double()
Complex xdr_complex()
String xdr_counted_string()
Double Complex xdr_dcomplex()
Unsigned Integer xdr_u_short()
Unsigned Long xdr_u_long()
64-bit Integer xdr_long_long_t()
Unsigned 64-bit Integer xdr_u_long_long_t()

Table 8-12: XDR Routines Used by IDL

Theroutines used for type COMPLEX, DCOMPLEX, and STRING are not primitive
XDR routines. Their definitions are as follows:

bool _t xdr_conpl ex(xdrs, p)
XDR *xdr s;
struct conplex { float r, i} *p;
{
return(xdr_float(xdrs, (char *) &p->r) &&
xdr_float (xdrs, (char *) &p->i));

}
bool _t xdr_dconpl ex(xdrs, p)

XDR *xdrs;

struct dconmplex { double r, i} *p;
{

return(xdr_doubl e(xdrs, (char *) &p->r) &&
xdr _doubl e(xdrs, (char *) &p->i));
}
bool t xdr_counted_string(xdrs, p)
XDR *xdrs;

Portable Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 207

char **p;

int input = (xdrs->x_op == XDR _DECCDE);
short | ength;

/* 1If witing, obtain the length */
if (!'input) length = strlen(*p);

/* Transfer the string length */
if (!xdr_short(xdrs, (char *) & ength)) return(FALSE);

/* 1f reading, obtain roomfor the string */
if (input)
{

*p = mall oc((unsigned) (length + 1));

p[length] = '\0"; / Null termination */

}
/* If the string length is nonzero, transfer it */
return(length ? xdr_string(xdrs, p, length) : TRUE);

}
Example: Reading C-Generated XDR Data with IDL

The following C program produces afile containing different types of data using
XDR. The usual error checking is omitted for the sake of brevity.

#i ncl ude <stdio. h>
#i ncl ude <rpc/rpc. h>
[xdr_conpl ex() and xdr_counted_string() included here]

mai n()
{
static struct {/* Qutput data */
unsi gned char c;
short s;
long I|;
float f;
doubl e d;
struct conplex { float r, i } cnp;
char *str;
}
data = {1, 2, 3, 4, 5.0, { 6.0, 7.0}, "Hello" };
u_int c_len = sizeof (unsigned char); /* Length of a char */

char *c_data = (char *) &data. c; /* Addr of byte field */
FILE *outfile; /* stdio streamptr */
XDR xdrs; /* XDR handl e */

/* Open stdio stream and XDR handl e */
outfile = fopen("data.dat", "w');

Building IDL Applications Portable Unformatted Input/Output

208 Chapter 8: Files and Input/Output

xdrstdi o_create(&xdrs, outfile, XDR_ENCCDE);

/* Qutput the data */
(voi d) xdr_bytes(&xdrs, &c_data, & _len, c_len);
(voi d) xdr_short(&xdrs, (char *) &data.s);
(void) xdr_long(&xdrs, (char *) &data.l);
(void) xdr_float(&xdrs, (char *) &data.f);
(voi d) xdr_doubl e(&xdrs, (char *) &data.d);
(voi d) xdr_conpl ex(&xdrs, (char *) &data.cnp);
(void) xdr_counted_string(&drs, &data.str);

/* Close XDR handl e and stdio stream */
xdr _destroy(&xdrs);
(void) fclose(outfile);

}

Running this program creates the file data.dat containing the XDR data. The
following IDL statements can be used to read thisfile and print its contents:

;Create structure containing correct types.

DATA={S, C. 0B, S:0, L:OL, F:0.0, D:0.0D, CM:COWLEX(0), STR "'

;Open the file for input.
OPENR, /XDR, 1, 'data.dat’

; Read the dat a.
READU, 1, DATA

:Close the file.
CLCSE, 1

; Show the results.
PRI NT, DATA

Executing these IDL statements produces the output:

{ 1 2 3 4. 00000 5. 0000000
(6. 00000, 7.00000) Hel | o}

}

For further details about XDR, consult the XDR documentation for your machine.

Sun users should consult their Network Programming manual.

Portable Unformatted Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 209
Associated Input/Output

Unformatted data stored in files often consists of arepetitive series of arrays or
structures. A common example is a series of images. IDL-associated file variables
offer aconvenient and efficient way to access such data.

An associated variable is avariable that maps the structure of an IDL array or
structure variable onto the contents of afile. Thefileistreated as an array of these
repeating units of data. The first array or structure in the file has an index of zero, the
second has index one, and so on. Such variables do not keep datain memory like a
normal variable. Instead, when an associated variable is subscripted with the index of
the desired array or structure within thefile, IDL performs the input/output operation
required to access the data.

When their use is appropriate (the file consists of a sequence of identical arrays or
structures), associated file variables offer the following advantages over READU and
WRITEU for unformatted input/output:

* Input/output occurs when an associated file variable is subscripted. Thus, it is
possible to perform input/output within an expression without a separate
input/output statement.

e Thesizeof the dataset islimited primarily by the maximum size of thefile
containing the data instead of the maximum memory available. Data sets too
large for memory can be accessed.

e Thereisno need to declare the maximum number of arrays or structures
contained in the file.

» Associated variables systematize access to the data. Direct access to any
element in thefileis rapid and simple—there is no need to calcul ate offsets
into the file and/or position thefile pointer prior to performing the input/output
operation.

» Associated variables are the most efficient form of IDL input/output.

An associated file variable is created by assigning the result of the ASSOC function
to avariable. See ASSOC in the IDL Reference Guide for details.

Example of Using Associated Input/Output

Assumethat afile named data.dat exists, and that thisfile containsa series of 10 x 20
arrays of floating-point data. The following two IDL statements open the file and
create an associated file variable mapped to thefile:

Building IDL Applications Associated Input/Output

210 Chapter 8: Files and Input/Output

;Open the file.
OPENU, 1, 'data.dat'’

;Make a file variable. Using the NOZERO keyword with FLTARR
;increases efficiency.
A = ASSOC(1, FLTARR(10, 20, /NOZERO)

The order of these two statements is not important—it would be equally valid to call
ASSOC first, and then open the file. Thisis because the association is between the
variable and the logical file unit, not the fileitself. It isaso legitimate to close the
file, open anew file using the same LUN, and then use the associated variable
without first executing a new ASSOC. Naturally, an error occursif the file is not
open when the file variable is subscripted in an expression or if thefileis open for the
wrong type of access (for example, trying to assign to an associated file variable
linked with afile opened for read-only access).

Asaresult of executing the two statements above, the variable A is now an associated
file variable. Executing the statement,

HELP, A
gives the following response:
A FLOAT = Fil e<data. dat> Array(10, 20)

The associated variable A maps the structure of a 10 x 20, floating-point array onto
the contents of the file data.dat. Thus, the response from the HEL P procedure shows
it as having the structure of atwo-dimensional array. An associated file variable only
performs input/output to the file when it is subscripted. Thus, the following two IDL
statements do not cause input/output to happen:

B=A

This assignment does not transfer data from the file to variable B because A is not
subscripted. Instead, B becomes an associated file variable with the same structure,
and to the same logical file unit, as A.

B =23

This assignment does not result in the value 23 being transferred to the file because
variable B (which became afile variable in the previous statement) is not subscripted.
Instead, B becomes ascalar integer variable containing the value 23. It isno longer an
associated file variable.

Reading Data from Associated Files

Once avariable has been associated with afile, data are read from the file whenever
the associated variable appears in an expression with a subscript. The position of the

Associated Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 211

array or structure read from the file is given by the value of the subscript. The
following IDL statements give some examples of using file variables:

; Copy the contents of the first array into nornal variable Z. Zis
;now a 10 x 20, floating-point array.
Z = Al O]

; Formthe sumof the first 10 arrays (Z was initialized in the
;previous statenent to the value of the first array. This statenent
;adds the following nine to it.).

FORI =1, 9DOZ =2Z + Al]

; Read fourth array and plot it.
PLOT, A[3]

;Subtract array four fromarray five, and plot the result. The
;result of the subtraction is then discarded.
PLOT, A[5] - Al4]

Subscripting Associated File Variables on Input

When the structure associated with afile variable is an array, it is possible to
subscript into the array being accessed during input operations. For example, for the
variable A defined above,

Z=A0 0, 1]

assigns the value of thefirst floating-point element of the second array within the file
to the variable Z. The rightmost subscript is taken as the subscript into the file
causing IDL to read the entire array into memory. This resulting array expression is
then further subscripted by the remaining subscripts.

Note
Although this ability can be convenient, it also can be very slow because every
access to an array element causes the entire array to be read from memory. Unless
only one element of the array is desired, it is faster to assign the contents of the
array to anormal variable by subscripting the file variable with a single subscript,
then accessing the individual array elementsin the normal variable.

Writing Data
When a subscripted associated variable appears on the left side of an assignment

statement, the expression on the right side is written into the file at the given array
position:;

Building IDL Applications Associated Input/Output

212 Chapter 8: Files and Input/Output

:Sets sixth record to zero
A[5] = FLTARR(10, 20)

;Wite ARR into sixth record after any necessary type conversions.
Al 5] = ARR

; Averages records J and J+1, and wites the result into record J.
ALJ] = (A[J] + AlJ +1])/2

When writing data, only a single subscript specifying the index of the affected array
or structure in thefileisalowed. Thus, it isnot possible to index individual elements
of associated arrays on output, although it is allowed for input. To update individual
elements of an array within afile, assign the contents of that array to a normal array
variable, modify the copy, and write the array back by assigning it to the subscripted
file variable.

Files with Multiple Structures
The same file may be associated with a number of different structures. Assume a
number of 128 x 128-byte images are contained on afile. The statement,
ROV = ASSOC(1, BYTARR(128))

will map thefile into rows of 128 bytes each. RON3] is the fourth row of the first
image, while RON128] isthefirst row of the second image. The statement,

| MAGE = ASSOC(1, BYTARR(128, 128))

maps the file into entire images; | MAGE[4] will be the fifth image.
Offset Parameter

The Offset parameter to ASSOC specifies the position in the file at which the first
array starts. This parameter is useful when afile contains a header followed by data
records. For example, if aUNIX file usesthefirst 1,024 bytes of the file to contain
header information, followed by 512 x 512-byte images, the statement,

| MAGE = ASSOC(1, BYTARR(512, 512), 1024)
sets the variable IMAGE to access the images while skipping the header.

Under VMS, stream files and RM S block mode files have their offset given in bytes,
and record-oriented files have it specified in records. Thus, the example above would
have worked for VMSif the file was a stream or block mode file. Assume however,
that the file has 512-byte, fixed-length records. In this case, skipping the first 1,024
bytesis equivalent to skipping the first two records:

I MAGE = ASSOC(1, BYTARR(512, 512), 2)

Associated Input/Output Building IDL Applications

Chapter 8: Files and Input/Output 213

Efficiency

Arrays are accessed most efficiently if their length is an integer multiple of the
physical block size of the disk holding the file. Common values are 512, 1,024, and
2,048 bytes. For example, on adisk with 512-byte blocks, one benchmark program
required approximately one-eighth of the time required to read a 512 x 512-byte
image that started and ended on a block boundary, as compared to a similar program
that read an image that was not stored on even block boundaries.

Each time a subscripted associated variable is referenced, one or more records are
read from or written to the file. Therefore, if arecord isto be accessed more than a
few times, it is more efficient to read the entire record into a variable. After making
the required changes to the in-memory variable, it can be written back to thefileif
necessary.

Unformatted Data from UNIX FORTRAN Programs

Unformatted data files generated by FORTRAN programs under UNIX contain an
extralong word before and after each logical record in the file. ASSOC does not
interpret these extra bytes but considers them to be part of the data. Thisis true even
if the F77_UNFORMATTED keyword is specified on the OPEN statement.
Therefore, ASSOC should not be used with such files. Instead, such files should be
processed using READU and WRITEU. An example of using IDL to read such data
isgiven in “Using Unformatted |nput/Output” on page 197.

Building IDL Applications Associated Input/Output

214 Chapter 8: Files and Input/Output

File Manipulation Operations

Locating Files

The FINDFILE function returns an array of strings containing the names of all files
that match its argument string. The argument string may contain any wildcard
characters understood by the command interpreter. Under VMS, thisis DCL. Under
UNIX, it isthe Bourne shell (/bin/sh). Under Windows it is COMMAND.COM. On
the Macintosh, standard Macintosh OS wildcard characters are supported. For
example, to determine the number of IDL procedure files that exist in the current
directory, use the following statement:

PRINT, '# IDL pro files:', N ELEMENTS(FI NDFI LE(' *.pro'))
See FINDFILE in the IDL Reference Guide for details.

IDL File Handling Routines

IDL file handling routines are listed in the following table:

File Handling Routine Description

FILE_ CHMOD Allows you to change file access permissions.

FILE DELETE Allows you to delete files and empty directories.

FILE EXPAND_PATH Fully qualifiesfile and directory paths.

FILE MKDIR Creates directories.

FILE TEST Tests afile or directory for existence and other
specific attributes.

FILE WHICH Searches for a specified filein adirectory search
path.

Table 8-13: IDL File Handling Routines

Changing File Access Permissions

The FILE_CHMOD procedure allows the user to change the current access
permissions (also referred to as modes) associated with afile or directory. File modes
are specified using the standard Posix convention of three protection classes (user,
group, other), each containing three attributes (read, write, execute). Thisis the same

File Manipulation Operations Building IDL Applications

Chapter 8: Files and Input/Output 215

format familiar to users of the UNIX chnod(1) command. For example, to make the
filempbose. dat read-only to everyone except the owner of thefile, but otherwise not
change any other settings.

FILE CHMOD, 'noose.dat', /u wite, g wite=0, o wite=0

To make the file be readable and writable to the owner and group, but read-only to
anyone else, and remove any other modes:

FI LE_CHMOD, 'noose.dat', '664'o0

To find the current protection settings for a given file, you can use the GET_MODE
keyword to the FILE_TEST function.

See FILE_CHMOD in the IDL Reference Guide for details.
Deleting Files and Empty Directories

The FILE_DELETE procedure allows a user to delete files and empty directories for
which they have appropriate permission. The process must have the necessary
permissions to remove the file, as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Microsoft Windows users should be careful to not specify atrailing backslash at the
end of a specification. For example:

FI LE_DELETE, 'c:\nydir\myfile'
and not:
FILE_DELETE, 'c:\mydir\nmyfile\'

VMS users should remember that the syntax for creating a subdirectory (as with the
CREATE/DIRECTORY DCL command) is not symmetric with that used to delete it
(with the DELETE,/DIRECTORY). FILE_DELETE follows the same rules. For
instance, to create a subdirectory of the current working directory named

bul I wi nkl e and then removeit:

FILE_MKDIR ' [. bul I wi nkl e]"
FI LE_DELETE, ' bul | wi nkl e. di r’

See FILE DELETE inthe IDL Reference Guide for details.
Expanding Files and Directory Paths

The FILE_EXPAND_PATH function can be used with a given afile or directory
name to convert the name to its fully qualified form and return it. A fully-qualified

Building IDL Applications File Manipulation Operations

216 Chapter 8: Files and Input/Output

file path completely specifies the location of afile without the need to consider the
user’s current working directory.

Note
This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE_EXPAND_PATH
when it encountersawildcard is platform dependent, differs between platforms, and
should not depended on. These differences are due to the underlying operating
system, and are beyond the control of IDL. To expand the wildcard and obtain fully
qualified paths, combine the FINDFILE function with FILE_EXPAND_PATH:

A = FI LE_EXPAND PATH(FI NDFI LE(* *. pro'))

See FILE_EXPAND_PATH in the IDL Reference Guide for details.
Creating Directories

You can create a directory using the FILE_ MKDIR procedure. The resulting
directory or directories are created with default access permissions for the current
process. If needed, you can use the FILE_ CHMOD procedure to ater access
permissions. If a specified directory has non-existent parent directories,
FILE_MKDIR automatically creates al the intermediate directories as well. For
instance, to create a subdirectory named noose in the current working directory on
the Macintosh, Unix, or Windows operating systems:

FI LE_MKDI R, ' noose'
To do the same thing under VMS:
FILE MKDI R, '[.npose]’
See FILE_MKDIR in the IDL Reference Guide for details.

Testing for a File’s Existence

The FILE_TEST function allows you to determine if afile exists without having to
open it. Additionally, using the FILE_TEST keywords provides information about
the file's attributes. For example, to determine whether your IDL distribution
supports the SGI Irix operating system:

result = FILE_ TEST(!DIR + '/bin/bin.sgi', /Dl RECTORY)
PRINT, 'SA IDL Installed: ', result ? 'yes' : 'no'

See FILE_TEST inthe IDL Reference Guide for details.

File Manipulation Operations Building IDL Applications

Chapter 8: Files and Input/Output 217

Searching for a Specific File

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn. If adirectory containsthefile, thefull
name of that file including the directory path isreturned. If FILE_WHICH does not
find the desired file, aNULL string is returned.

This command is modeled after the UNIX whi ch(1) command, but iswrittenin the
IDL language and is available on all platforms. Its source code can be found in the
filefil e_whi ch. prointhel i b subdirectory of the IDL distribution.

As an example, the following line of code alows you to find the location of the
file_which. profile

Result = FILE_WHI CH(' file_which.pro')
Alternately, to find the location of the UNIX | s command:
Result = FILE_WH CH(getenv(' PATH), 'Is")
See FILE_WHICH inthe IDL Reference Guide for details.

Getting Help and Information

Information about currently open file unitsis available by using the FILES keyword
with the HEL P procedure. If no arguments are provided, information about all
currently open user file units (units 1-128) is given. For example, the following
command can be used to get information about the three special units (-2, —1, and 0):

HELP, /FILES, -2, -1, O

This command results in output similar to the following:

Uni t Attributes Nane

-2 Wite, New, Tty, Reserved <stderr>

-1 Wite, New, Tty, Reserved <st dout >
0 Read, Tty, Reserved <stdi n>

See HELP in the IDL Reference Guide for details.
The FSTAT Function

The FSTAT function can be used to get more detailed information, aswell as
information that can be used from within an IDL program. It returns a structure
expression of type FSTAT or FSTAT64 containing information about the file. For
example, to get detailed information about the standard input, use the following
command:

Building IDL Applications File Manipulation Operations

218

Chapter 8: Files and Input/Output

HELP, /STRUCTURES, FSTAT(0)
This displays the following information:
** Structure FSTAT, 17 tags, |ength=64:

UNI'T LONG 0
NAME STRI NG ' <stdin>'
OPEN BYTE 1
| SATTY BYTE 0
| SAGUI BYTE 1
| NTERACTI VE BYTE 1
XDR BYTE 0
COVPRESS BYTE 0
READ BYTE 1
WRI TE BYTE 0
ATI ME LONGG4 0
CTI ME LONGG4 0
MTI ME LONGG4 0
TRANSFER_COUNT LONG 0
CUR_PTR LONG 0
SI ZE LONG 0
REC _LEN LONG 0

On some platforms, IDL can support files that are longer than 2°31-1 bytesin length.
If FSTAT is applied to such afile, it returns an expression of type FSTAT64 instead
of the FSTAT structure shown above. FSTAT64 differs from FSTAT only in that the
TRANSFER_COUNT, CUR_PTR, SIZE, and REC_LEN fields are signed 64-bit
integers (type LONG64) in order to be able to represent the larger sizes.

Thefields of the FSTAT and FSTAT64 structures provide various information about
the file, such as the size of the file, and the dates of last access, creation, and last
modification. For more information on the fields of the FSTAT and FSTAT64
structures, see FSTAT in the IDL Reference Guide.

An Example Using FSTAT

The following IDL function can be used to read single-precision, floating-point data
from a stream file into a vector when the number of elementsin the file is not known.
It uses the FSTAT function to get the size of the filein bytes and divides by four (the
size of asingle-precision, floating-point value) to determine the number of values.
Note that this approach will not work with VM S variable-length record files:

; READ _DATA reads all the floating point values froma streamfile
;and returns the result as a floating-point vector.
FUNCTI ON READ_DATA, file

;Get a unique file unit and open the data file.
OPENR, /CGET_LUN, wunit, file

File Manipulation Operations Building IDL Applications

Chapter 8: Files and Input/Output 219

Get file status.
status = FSTAT(unit)

; Make an array to hold the input data. The SIZE field of status
; gives the nunber of bytes in the file, and single-precision,

; floating-point values are four bytes each.

data = FLTARR(status.size / 4)

: Read the data.
READU, unit, data

:Deall ocate the file unit. The file also will be closed.
FREE LUN, unit

RETURN, data

END

Assuming that afile named dat a. dat exists and contains 10 floating-point values,
the READ_DATA function could be used as follows:

; Read fl oating-point values from data. dat.
A = READ DATA(' data. dat')

: Show the result.
HELP, A

The following output is produced:
A FLOAT = Array(10)

Flushing File Units

For efficiency, IDL buffersits input/output in memory. Therefore, when dataare
output, there isawindow of time during which data are in memory and have not been
actualy placed into the file. Normally, this behavior is transparent to the user (except
for the improved performance). The FLUSH routine exists for those rare occasions
where a program needs to be certain that the data has actually been written to the file
immediately. For example, use the statement,

FLUSH, 1
to flush file unit one.
See FLUSH inthe IDL Reference Guide for details.

Building IDL Applications File Manipulation Operations

220 Chapter 8: Files and Input/Output

Positioning File Pointers

Each open file unit has a current file pointer associated with it. Thisfile pointer
indicates the position in the file at which the next input/output operation will take
place. Thefile position is specified as the number of bytes from the start of thefile.
Thefirst position in thefile is position zero. The following statement will rewind file
unit 1 to its start:

PO NT_LUN, 1, O
The following sequence of statements will position it a the end of thefile:

tnp = FSTAT(1)
PO NT_LUN, 1, tnp.size

POINT_LUN has the following operating-system specific behavior:

* UNIX: the current file pointer can be positioned arbitrarily — moving to a
position beyond the current end-of-file causes the file to grow out to that point.
The gap created isfilled with zeroes.

» VMSstream files: the current file pointer can be positioned arbitrarily —
moving to a position beyond the current end-of-file causes the file to grow out
to that point. The gap created isfilled with zeroes.

 VMShblock mode and record-oriented files: attempting to move the pointer
past the current end-of-file causes an end-of-file error.

* VMSrecord-oriented files: thefile pointer should only be set to record
boundaries. Setting it to other positions can result in unexpected behavior.

* Windows: the current file pointer can be positioned arbitrarily — moving to a
position beyond the current end-of-file causes the file to grow out to that point.
Unlike UNIX, the gap created isfilled with arbitrary datainstead of zeroes.

» Macintosh: the current file pointer cannot be positioned past the end of the
file.

See POINT_LUN inthe IDL Reference Guide for details.
Testing for End-Of-File

The EOF function is used to test afile unit to seeif it is currently positioned at the
end of thefile. It returnstrue (1) if the end-of-file condition is true and false (0)
otherwise.

Note that under VMS, non-sequential files or files opened across DECnet always
return “false’.

File Manipulation Operations Building IDL Applications

Chapter 8: Files and Input/Output 221

For example, to read the contents of afile and print it on the screen, use the following
statements:

; Open file deno.doc for reading.
OPENR, 1, 'deno. doc'

;Create a variable of type string.
LINE = "

; Read and print each line until the end of the file is encountered.
WHI LE(NOT EOF(1)) DO BEG N READF, 1, LINE & PRI NT, LI NE & END

:Done with the file.
CLCSE, 1

See EOF in the IDL Reference Guide for details.
GET_KBRD

The GET_KBRD function returns the next character available from the standard
input (IDL file unit zero) as a single character string. It takes a single parameter
named WAIT. If WAIT is zero, the function returns the null string if there are no
charactersin the terminal typeahead buffer. If it is nonzero, the function waits for a
character to be typed before returning.

Under Windows, the GET_KBRD function can be used to return Windows special
characters (in addition to the standard keyboard characters). To get a special
character, hold down the Alt key and type the character’s ANSI equivalent on the
numeric keypad while GET_KBRD iswaiting. Control + key combinations are not
supported.

See GET_KBRD in the IDL Reference Guide for details.
Note

RSI recommends the use of a GUI interface (e.g. WIDGET_BUTTON) instead of
GET_KBRD where possible.

Example—Using GET_KBRD

A procedure that updates the screen and exits when the carriage return is typed might
appear asfollows:

: Procedure definition.
PRO UPDATE,

; Loop forever.

Building IDL Applications File Manipulation Operations

222 Chapter 8: Files and Input/Output

VH LE 1 DO BEG N

; Update screen here...

; Read character, no wait.
CASE GET_KBRD(0) OF

:Process letter A
YA

;Process letter B.
"B

:Process other alternatives.

;Exit on carriage return (ASCIlI code = 15 octal).
STRI N " 15B): RETURN

;lgnore all other characters.
ELSE:

ENDCASE
ENDVWHI LE

; End of procedure.
END

Using the STRING Function to Format Data

The STRING function is very similar to the PRINT and PRINTF procedures. It can
be thought of asaversion of PRINT that places its formatted output into a string
variable instead of afile. If the output isasingle line, the result isa scalar string. If
the output has multiple lines, the result isastring array with each element of the array
containing asingle line of the output.

Example—Using STRING with Explicit Formatting
The IDL statements:

; Produce a string array.
A=STRI NG FORVAT=' (" The values are:", /, (1))', I'NDGEN(5))

; Show its structure.
HELP, A

File Manipulation Operations Building IDL Applications

Chapter 8: Files and Input/Output 223

:Print out the result.
FOR1 =0, 5 DO PRINT, A[l]

produce the following output:

A STRI NG = Array(6)
The val ues are:

0

1

2

3

4

See STRING in the IDL Reference Guide for details.
Reading Data from a String Variable

The READS procedure performs formatted input from a string variable and writes
the results into one or more output variables. This procedure differs from the READ
procedure only in that the input comes from memory instead of afile.

Thisroutine is useful when you need to examine the format of a datafile before
reading the information it contains. Each line of thefile can beread into astring using
READF. Then the components of that line can be read into variables using READS.

See the description of READS in the IDL Reference Guide for more details.

Building IDL Applications File Manipulation Operations

224 Chapter 8: Files and Input/Output
UNIX-Specific Information

UNIX offersonly asingle type of file. All files are considered to be an uninterpreted
stream of bytes, and there is no such thing as record structure at the operating system
level. (By convention, records of text are simply terminated by the linefeed character,
whichisreferred to as “newline.”) It is possible to move the current file pointer to
any arbitrary position in the file and to begin reading or writing data at that point.
Thissimplicity and generality form a system in which any type of file can be
manipulated easily using asmall set of file operations.

Reading FORTRAN-Generated Unformatted Data with IDL

The UNIX file system considers all files to be an uninterpreted stream of bytes.
Standard FORTRAN 1/O considers all input/output to be done in terms of logical
records.

In order to reconcile the FORTRAN need for logical records with UNIX files, UNIX
FORTRAN programs add a longword count before and after each logical record of
data. These longwords contain an integer count giving the number of bytesin that
record. Note that direct-access FORTRAN 1/O does not write datain this format, but
simply transfers binary datato or from thefile.

The use of the F77_UNFORMATTED keyword with the OPENR statement informs
IDL that the file contains unformatted data produced by a UNIX FORTRAN
program. When afile is opened with this keyword, IDL interprets the longword
counts properly and is able to read and write files that are compatible with
FORTRAN.

Reading data from a FORTRAN file

The following UNIX FORTRAN program produces a file containing a five-column
by three-row array of floating-point values with each element set to its one-
dimensional subscript:

PROGRAM f t n2i dI

INTEGER i,]
REAL data(5, 3)

OPEN(1, FILE="ftn2idl.dat", FORME"unformatted")
DO 100 j =1, 3
DO 100 i =1, 5
data(i,j) = ((j - 1) *5) + (i - 1)
print *, data(i,j)

UNIX-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 225

100 CONTI NUE
WRI TE(1) data
END

Running this program creates the file ftn2idl.dat containing the unformatted array.
Thefollowing IDL statements can be used to read this file and print out its contents:

;Create an array to contain the fortran array.
data = FLTARR(5, 3)

; Open the fortran-generated file. The F77_UNFORMATTED keyword is
;necessary so that IDL will knowthat the file contains unfornatted
;data produced by a UNI X FORTRAN program

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORMATTED

; Read the data in a single input operation.
READU, |un, data

; Rel ease the logical unit nunber and close the fortran file.
FREE_LUN, |un

;Print the result.
PRI NT, data

Executing these IDL statements produces the following output:

0. 00000 1. 00000 2.00000 3. 00000 4.00000
5. 00000 6. 00000 7.00000 8. 00000 9. 00000
10. 0000 11. 0000 12. 0000 13. 0000 14. 0000

Because unformatted data produced by UNIX FORTRAN unformatted WRITE
statements are interspersed with extra information before and after each logical
record, it isimportant that the IDL program read the datain the same way that the
FORTRAN program wrote it. For example, consider the following attempt to read
the above datafile onerow at atime:

;Create an array to contain one row of the FORTRAN array.
data = FLTARR(5, /NOZERO)

OPENR, lun, 'ftn2idl.dat', /GET_LUN, /F77_UNFORVMATTED

;One row at a tine.
FORI =0, 4 DO BEG N

:Read a row of data.
READU, |un, data

;Print the row
PRI NT, data

Building IDL Applications UNIX-Specific Information

226 Chapter 8: Files and Input/Output

ENDFOR

:Close the file.
FREE_LUN, |un

Executing these IDL statements produces the outpui:

0. 00000 1. 00000 2. 00000 3. 00000 4.00000
% READU: End of file encountered. Unit: 100

File: ftn2idl.daté6
% Execution halted at $MAI N$(O0).

Here, IDL attempted to read the single logical record written by the FORTRAN
program asif it were written in five separate records. IDL hit the end of the file after
reading the first five values of the first record.

Writing data to a FORTRAN file

Thefollowing IDL statements create a five-column by three-row array of floating-
point values with each element set to it's one-dimensional subscript, and writes the
array to adatafile suitable for reading by a FORTRAN program:

;Create the array.
data = FI NDGEN(5, 3)

;Open a file for witing. Note that the F77_UNFORMATTED keyword is
;necessary to tell IDLto wite the data in a format readable by a
; FORTRAN program

OPENW lun, 'idl2ftn.dat', /GET_LUN, /F77_UNFORMATTED

Wite the data.
WRI TEU, |un, data

;Close the file.
FREE_LUN, | un

The following FORTRAN program reads the data file created by IDL.:
PROGRAM i dI 2f t n

INTEGER i,]
REAL data(5, 3)

OPEN(1, FILE="idl2ftn.dat", FORME"unformatted")

READ(1) data
DO 100 =1, 3
DO 100 i =1, 5
PRINT *, data(i,j)
100 CONTI NUE
END

UNIX-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 227
VMS-Specific Information

Input/output under VM Sis arelatively complex topic, involving alarge number of
formats and options. VM S files are record-oriented, and it is necessary to take this
into account when writing applications, especially those that will run under other
operating systems. The VMS user faces decisions in the following areas:

Organization

A VM Sfile can have sequential, relative, or indexed organization. The organization
controls the way in which datais placed in the file and determines the options for
random access. IDL is able to read data from all three organizations and is able to
create sequential or indexed files.

In addition, it is possible to bypass the organization and access afile in “block
mode.” In block mode, most VM S file processing is bypassed. The IDL user can
access ablock mode file asif it were simply a stream of uninterpreted bytes. Thisis
very similar to stream files (although considerably more efficient).

Warning
With some file organizations, VMS intermingles housekeeping information with
data. When accessing such afilein block mode, it is easy to corrupt this
information and render the file unusable in its usual mode; however, block mode
will always work. Avoiding such corruption is the user’'s responsibility.

Access

The access mode controls how datain afile are accessed. VM S supports sequential
access, random access by key value (indexed files), relative record number (relative
files), or relative file address (all file organizations). IDL does not support access by
relative record number—files are accessed sequentially or through key value.
Random access for sequential filesis allowed by file address using the POINT_LUN
procedure.

Record Format

VMS supports fixed-length records, variable-length records, variable length with
fixed-length control field (VFC), and stream format. Of these, the fixed-length and
variable-length record formats are the most useful and are fully supported by IDL.

It is possible to read the data portion of aVFC file, but not the control field. All
access to stream mode files under IDL is done through the Standard C Library. It is
worth noting that VM S stream files are record oriented (and therefore, fail to provide

Building IDL Applications VMS-Specific Information

228

Chapter 8: Files and Input/Output

much of the flexibility of UNIX stream files) although the VM S Standard C Library
(upon which IDL isimplemented) does agood job of concealing this limitation. Our
experience indicates that input/output using VMS stream mode filesis dramatically
slower than the other options and should be avoided when possible. For unformatted
data, using block mode can give similar flexibility aswell as high efficiency.

Record Attributes

When arecord is output to the screen or printer, VM S uses its carriage control
attributes to determine how to output each line. Explicit carriage control specifiesthat
VM S should do nothing, and the user will provide the appropriate carriage control (if
any) in the data. Carriage-return carriage control specifies that each line should be
preceded by aline feed and followed by a carriage return. FORTRAN carriage
control indicates that the first byte of each record contains a FORTRAN carriage
control character. The possible values of this byte are given in the following table.
The default for IDL is carriage-return carriage control.

Byte ASCII Meanin
Value | Character 9
0 (null) No carriage control—output data directly.
32 (space) Single-space. A linefeed precedes the output data, and a
carriage return follows.
48 0 Double-space. Two linefeeds precede the output data,
and a carriage return follows.
49 1 Page gject. A formfeed precedes the data, and a carriage
return follows.
40 + Overprint. A carriage return follows the data, causing
the next output line to overwrite the current one.
36 $ Prompt. A linefeed precedes the data, but no carriage
return follows.
other Same as ASCII space character. Single-space carriage
control

Table 8-14: VMS FORTRAN Carriage Control

File Attributes

There are many file attributes that can be adjusted to suit various requirements. These
attributes allow specifying the default name, the initial size of new files, the amount

VMS-Specific Information

Building IDL Applications

Chapter 8: Files and Input/Output 229

by which files are extended, whether the file is printed or sent to a batch queue when
closed, file sharing between processes, etc.

How IDL Handles Records

With record-oriented files, IDL always transfers at least a single record of data. If the
amount of data required exceeds a single record, more input/output occurs. For
example, consider the case of afile open on unit 1 for output with 80-character
records. The statement,

WRI TEU, UNIT, FI NDGEN(512)

requires 2,048 bytes to be output (each floating-point value takes four bytes), and
thus, causes 26 records to be output. The last record will not be entirely full and is
padded at the end with zeroes.

On later input, the same ruleis applied in reverse—26 records are read, and the
unused portion of the last oneisdiscarded. The basic rule of input/output with record-
oriented filesis that the form of the input and output statements should match. For
instance, the statements,

WRITEU, UNIT, A
WRITEU, UNIT, B
WRITEU, UNIT, C

generate three output records and should be later input with statements of the
following form:

READU, UNIT, A
READU, UNIT, B
READU, UNIT, C

In contrast, the statement
WRITEU, UNIT, A B, C

generates a single-output record and should be later input with the following single
Statement:

READU, UNIT, A B, C
Reading FORTRAN-Generated Unformatted Data with IDL
The following VM S FORTRAN program produces afile containing a5 x 5 array of

floating-point values with each element set to its one-dimensional subscript:

INTEGER |, J REAL DATA(5, 5)
OPEN(1, FILE='data.dat', FORM=' unformatted', status='new)
DO 100 J =1, 5

Building IDL Applications VMS-Specific Information

230 Chapter 8: Files and Input/Output

DO100 | =1, 5
DATA(1,J) = ((J-1) * 5) + (I-1)
100 CONTI NUE
WRI TE(1) DATA
END

Running this program creates the file data.dat containing the unformatted data. By
default, VMS FORTRAN programs create such files using segmented records, which
is ascheme used by FORTRAN to write data records with lengths that exceed the
actual record lengths allowed by VMS. Each segmented record is written as one or
more actual VMS records. Each of the actual records has a 2-byte control field
prepended that allows FORTRAN to reconstruct the original record. IDL isableto
read and write segmented record files if the OPEN statement, used to access thefile,
includes the SEGMENTED keyword. The following IDL statements can be used to
read thisfile and print out its contents:

;Open the file. The SEGQVENTED keyword i s necessary so that 1DL will
;know that the file contains VM5 FORTRAN segnent ed records.
OPENR, 1, 'data.dat', /SEGVENTED

;Create an array to contain the array.
A = FLTARR(5, 5, /NOQZERO

;Read the data in a single input operation.
READU, 1, A

Print the result.
PRI NT, A

Executing these IDL statements produces the following output:

0. 00000 1.00000 2.00000 3.00000 4.00000
5. 00000 6. 00000 7.00000 8.00000 9.00000
10. 0000 11.0000 12. 0000 13. 0000 14.0000
15. 0000 16.0000 17.0000 18.0000 19.0000
20. 0000 21.0000 22.0000 23.0000 24.0000

Aswith al record-oriented input/output, it isimportant that the IDL program read the
datain the same way it was written by the FORTRAN program. For example,
consider the following attempt to read the above data file one row at atime:

;Create an array to contain one row of the array.
OPENR, 1, 'DATA. DAT', / SEGVENTED
A = FLTARR(5, /NOQZERO

;One row at a tine.
FORI =0, 4 DOBEGN %

; Read a row of data.

VMS-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 231

READU, 1, A $

Print the row.
PRINT, A $

ENDFOR
Executing these IDL statements produces the following output:

0. 00000 1. 00000 2. 00000 3. 00000 4. 00000
% End of file encountered on file unit: 1.
% Execution halted at $MAI N$(0).

This program attempted to read the single logical record written by the FORTRAN
program asif it were written in five separate records and so, hit the end of thefile
after reading thefirst five values of the first record.

Indexed Files

Creating Indexed Files

Although IDL can read and write indexed files, it cannot create them. The options for
creating indexed files are so numerous that they should be specified using the VM S
CREATE/FDL command. FDL (File Definition Language) is the standard method for
specifying VM S file attributes. The VAX/VMS File Definition Language Facility
Reference Manual (1986) describes FDL in detail. It is often useful to start with the
FDL description for an existing file and then modify it to suit your new application.
The VMS command,

$ ANALYZE/ RVS FI LE/ FDL fil e. dat

createsafilenamedfi | e. f dl containingthe FDL descriptionforfi | e. dat.The
following is an example of an FDL description for an indexed file named data.dat
with two keys. Thefirst key is a 32-character string containing an employee name.
The second is a 4-byte integer containing the current salary for that employee:

FI LE
NAME dat a. dat
ORGAN ZATI ON i ndexed
RECORD
Sl ZE 36
KEY 0O
NAME " Nane"
SEQ_LENGTH 32
SEQ) PCSITION O

TYPE string
KEY 1
CHANCES yes

Building IDL Applications VMS-Specific Information

232 Chapter 8: Files and Input/Output

NAME " Sal ary”
SEQ)_LENGTH 4
SEQD_PCsI TI ON 32
TYPE bi n4

Assume that this description resides in afile named data.fdl. The following IDL
statement can be used to create data.dat:

SPAWN, 'create/fdl = data.fdl’

Oncethefile exists, it can be opened within IDL using the KEY ED keyword with the
OPENR or OPENU procedures.

Using Indexed Files

Given afile created using the FDL description in the previous section, the IDL
statements below do four things:

* Add some employee records to the file

» Print the records out sorted by name

e Giveanemployeearaise

» Print the records sorted by increasing salary

IDL isableto perform both formatted and unformatted input/output with indexed
files. In thisinstance, unformatted accessis required because the record definition
contains abinary field (salary).

; Open the previously created, enpty file.
OPENU, UNIT, 'data.dat', /KEY, /GET_LUN

;Add the first record. The STRING function is used to pad the nane
;to 32 characters using space characters because the data mnust
;match the FDL description of the file exactly.

WRI TEU, UNIT, STRING ' Natasha', FORMAT = "(A T33)"), 14257L

; Second record.
WRI TEU, UNIT, STRINGE'Bullw nkle', FORMAT = "(A T33)"), 32501L

:Third record.
VRI TEU, UNIT, STRI NG ' Rocky', FORMAT = "(A T33)"), 32500L

;Fourth and | ast record.
WRI TEU, UNIT, STRINE'Borris', FORMAT = "(A T33)"), 6805L

;Print the contents of the file, sorted by name. READ BY INDEX is a

; procedure (described below) that does the actual work.
READ BY_INDEX, UNIT, 0, '"a', 'By Nane:'

VMS-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 233

;1n preparation for giving a raise, nake variables to read the
;current infornation on the enpl oyee.
NAME = STRI NG REPLI CATE(32B, 32))

SALARY = OL

; Read the record for enpl oyee Bul | wi nkl e.
READU, UNI T, NAME, SALARY, KEY_VALUE = 'Bul | wi nkl e’

; Update Bul lwinkle's record with an increased salary. The REWRI TE
; keyword causes the | ast input record to be overwitten, instead of
;creating a new record.

VRI TEU, UNIT, NAME, SALARY + 10000L, /REVRITE

;Print the contents of the file, sorted by salary.
READ BY_INDEX, UNIT, 1, OL, 'By Salary:"

:Free the file unit, and close the file.
FREE LUN, UNIT

The procedure READ_BY_INDEX isimplemented as follows:

;Print the contents of the file sorted on the index given by KI. KV
;is the value the first record should be matched agai nst. Headi ng
;is a banner conment to be printed before the file contents.

PRO READ BY_|I NDEX, UNIT, KI, KV, HEADI NG

;Indicates first trip through main | oop.
FIRST = 1

; Prepare variables to read the records into.
NAME = STRI NG REPLI CATE(32B, 32))
SALARY = OL

; The EOF function does not work with indexed files, so we will use
;ON_IOERROR to catch attenpts to read too far.
ON_| CERROR, ECD

;Loop will be exited on end-of-file.
VWH LE 1 DO BEG N

cFirst iteration.
IF (FIRST) THEN BEG N

; Qut put the heading.
PRI NT, FORMAT='(/, a)', HEADI NG

;On first iteration, use keywords to |locate the first record.

Building IDL Applications VMS-Specific Information

234 Chapter 8: Files and Input/Output

READU, UNI T, NAME, SALARY, KEY_ID = KI, KEY_MATCH = 1, $
KEY_VALUE = KV

;lndicate that first iteration has happened.
FIRST = 0

;After the first iteration, use nornmal input statenent to read
;sequential ly.
ENDI F ELSE BEG N
READU, UNI T, NAME, SALARY
ENDEL SE

:Print the record.
PRI NT, FORMAT = '(4X, A, T15, 1)', NAME, SALARY

ENDVWHI LE
; When t he above loop tries to read past end-of-file, execution wll
:be transferred here.

EQD:

END

Executing the above statements gives the following output:

By Nane:
Borris 6805
Bul | wi nkl e 32501
Nat asha 14257
Rocky 32500
By Sal ary:
Borris 6805
Nat asha 14257
Rocky 32500
Bul | wi nkl e 42501

Magnetic Tape

Under VMS, IDL offers procedures to directly access magnetic tapes. Data are
transferred between the tape and IDL arrays without using RMS. Optionally, tapes
from IBM mainframe compatible systems may be read or written with odd/even byte
reversal.

VMS-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 235

The routines used to access magnetic tape directly are as follows:

Routine Description
REWIND Rewind a tape unit.
SKIPF Skip records or files.
TAPRD Read from tape.
TAPWRT Write to tape.
WEOF Write an end-of-file mark on tape.

Table 8-15: Magnetic Tape Access Routines

To use the IDL magnetic tape procedures, you must define alogical name MTn: to be
equivalent to the actual name of the tape drive you wish to use. This definition must
be done before invoking IDL. You also must have the tape mounted as aforeign
volume.

For example, if you wish to access the tape drive MUAQO: as IDL tape unit number
one, issue the following VM S commands before running IDL:

$ MOUNT/ FOREI GN MUAO:
$ DEFINE MI'1 MUAO:

Then, within IDL, refer to the tape as unit number one. The IDL unit number n may
range from 0 to 9.

Note
These unit numbers are not the same as the LUNSs used by the other input/output
routines. The unit numbers used by the magnetic tape routines are completely
unrelated and come from the last letter of the MT* logical name used to refer toit.

Magnetic Tape Examples

The following statements skip forward 30 records on the tape mounted on the drive
with the logical name MTI2: and print amessage if an end-of-file was encountered.

; Skip forward over 30 records on unit 2.
SKI PF, 2, 30, 1

;Print a nessage if the requested nunber of records were not

; ski pped.
IF 'ERR NE 30 THEN PRINT, 'end-of-file hit’

Building IDL Applications VMS-Specific Information

236 Chapter 8: Files and Input/Output

The next exampl e skips two files backwards and then positions the tape immediately
after the second file mark encountered in reverse.

; G backwards two files. Position after file if two files were
;actual Iy skipped.
SKIPF, 0, -2

IF TERR EQ -2 THEN SKIPF, 0, 1

The following code segment reads a 512 x 512-byte image from the tape which is
assigned the logical name MT5. It is assumed that the data are written in 2,048-byte
tape blocks.

; Define image array.
a = BYTARR(512, 512)

;Define an array to hold one tape bl ock worth of data.
b = BYTARR(512, 4)

FOR |1 = 0, 511, 4 DO BEG N
: Read next record.
TAPRD, B, 5

;lnsert four rows starting at i-th row
A[O, I] =B

ENDFOR

Assuming the tape is actually on drive MXB2:, the mount command, which must be
issued to VM S before entering IDL, is as follows:

; This command serves to both nount the tape and define the | ogical
;name MI5 to refer to it, thus making it unit 5 within IDL.
$ MOUNT MXB2:/FOR "" MI5

References

Digital Equipment Corporation (1986), VAX/VMS File Definition Language Facility
Reference Manual, Order Number AA-Z415B-TE, Maynard, M assachusetts.

VMS-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 237
Windows-Specific Information

Under Microsoft Windows, afileisread or written as an uninterrupted stream of
bytes-thereis no record structure at the operating system level. Linesin aWindows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers afile to bein either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs.
Programmers familiar with this situation may be concerned about how IDL handles
read and write operations. IDL is not affected by this quirk of the C runtime library,
and no special action isrequired to work around it. Read/write operations are handled
the same in Windows asin Unix: when IDL performs aformatted 1/O operation, it
reads/writes the CR/LF line termination. When it performs a binary operation, it
simply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE
keywordsto the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to alow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versions of IDL.

Building IDL Applications Windows-Specific Information

238 Chapter 8: Files and Input/Output
Macintosh-Specific Information

Macintosh files store two pieces of information not generally stored by files on other
platforms—the file's type and its creator. The MACTY PE and MACCREATOR
keywords to the OPEN procedures allow you to explicitly set the type and creator for
files created on a Macintosh. See the documentation for the Macintosh-Only
keywords to OPEN in the IDL Reference Guide.

Macintosh-Specific Information Building IDL Applications

Chapter 8: Files and Input/Output 239
Scientific Data Formats

IDL supportsthe HDF (Hierarchical Data Format), HDF-EOS (Hierarchical Data
Format-Earth Observing System), CDF (Common Data Format), and NetCDF
(Network Common Data Format) self-describing, scientific dataformats. Collections
of built-in routines provide an interface between IDL and these formats.
Documentation for specific routines and further discussion of the various formats can
be found in IDL Scientific Data Formats Guide.

Building IDL Applications Scientific Data Formats

240

Chapter 8: Files and Input/Output

Support for Standard Image File Formats

IDL includes routines for reading and writing many standard graphics file formats.
These routines and the types of files they support are listed in the table below.
Documentation on these routines can be found in the online help (enter “?” at the IDL

prompt).
Read/Write , .

Format Routines Query Routine Description

BMP READ_BMP QUERY_BMP | Windows Bitmap
WRITE_BMP (. brmp) Format

Interfile | READ_INTERFILE n‘a Interfile version 3.3
(Write routine is n/a) Format

JPEG READ_JPEG QUERY_JPEG | Joint Photographic
WRITE_JPEG Experts Group files

NRIF (Read routineis n/a) n/a NCAR Raster
WRITE_NRIF Interchange Format

PICT READ_PICT QUERY_PICT Macintosh version 2
WRITE_PICT PICT files (bitmap only)

PNG READ_PNG QUERY_PNG Portable Network
WRITE_PNG Graphicsfile

PPM READ_PPM QUERY _PPM PPM/PGM Format
WRITE_PPM

SRF READ_SRF QUERY_SRF Sun Raster File
WRITE_SRF

TIFF READ_TIFF QUERY _TIFF 8-bit or 24-bit Tagged
WRITE_TIFF Image File Format

X11 READ_X11 BITMAP | n/a X11 Bitmap format used

Bitmap | (Writeroutineisn/a) for reading bitmaps for

IDL widget button labels

XWD READ_XWD n/a X Windows Dump

(Write routineis n/a) format

Table 8-16: IDL-Supported Graphics Standards

Support for Standard Image File Formats

Building IDL Applications

Part Il: Basics of
IDL Programming

Chapter 9:

Introduction to IDL
Programming

The following topics are covered in this chapter:

Whatisan IDL Program? 244 Compiling and Running Your Program . . . 252
UsingtheIDL Editor 246 Commenting Your IDL Code........... 255
CreatingaSimpleProgram 251

Building IDL Applications 243

244 Chapter 9: Introduction to IDL Programming
What is an IDL Program?

There are three types of IDL programs. main-level programs, batch files, and
program files.

Main-Level Programs

Main-level programs are entered at the IDL command line, and are useful when you
have afew commands you want to run without creating a separate file to contain your
commands. To create and run a simple main-level program, do the following:

1. StartIDL
2. Atthe DL command line, enter the following:
A=2

3. Enter. RUNat the DL command line. The command line prompt changesfrom
| DL>to-.

4. Enter the following:
A=A*2
PRINT, A
END
5. Thiscreates amain-level program, which compiles and executes. IDL prints 4.

6. Enter. GOat the IDL command line. The main-level program is executed
again, and now IDL prints 8.

Batch Files

A batch file contains one or more IDL statements or commands. Each line of the
batch file is read and executed before proceeding to the next line. This makes batch
files different from main-level programs, in which the main-level programis
compiled as a unit before being executed, and program files, in which all modules
contained in the file are compiled as a unit before being executed. For an example of
creating and running a batch file, see “Batch Execution” in Chapter 2 of Using IDL.

Program Files

Most IDL applications are in the form of program files. Program files are text files
that contain IDL procedures and/or functions:

What is an IDL Program? Building IDL Applications

Chapter 9: Introduction to IDL Programming 245

* A procedure is a self-contained sequence of IDL statements that performs a
well-defined task. Procedures are defined with the procedure definition
statement, PRO.

« A function is aself-contained sequence of IDL statements that performs a
well-defined task and returns a value to the calling program unit when it is
executed. Functions are defined with the function definition statement,
FUNCTION.

For example, suppose you have afile called hel | o_wor | d. pr o containing the
following code:

PRO hel | o_world
PRINT, 'Hello Wrld
END

ThisIDL “program” consists of a single user-defined procedure.

IDL program files are assumed to have the extension . pr o. When IDL searchesfor a
user-defined procedure or function, it searches for files consisting of the name of the
procedure or function, followed by the . pr o extension.

Procedures and functions can also contain arguments and keywords. Arguments allow
variablesto beinputted into and/or outputted from a procedure or function. Keywords
are usually used to set specific parameters pertaining to a procedure or function.

For example, the previous user-defined procedure could be changed to include an
argument and a keyword:

PRO hell o_world, nanme, | NCLUDE NAME = incl ude
I F (KEYWORD _SET(include)) THEN PRINT, 'Hello World From' + $
nanme ELSE PRINT, 'Hello World'
END

Now if the INCLUDE_NAME keyword is set to a value greater than zero, the above
procedure will include the string contained within the nanme variable, supplied viathe
name argument.

Procedures and functions can also be referred to as routines. An IDL program file
may contain one or many routines, which can be amix of procedures and functions.
These routines can be written into an IDL program file using the IDL Editor.

Building IDL Applications What is an IDL Program?

246

Using the IDL Editor

Chapter 9: Introduction to IDL Programming

Although any text editor can be used to create an IDL program file, the IDL Editor
contains features that simplify the process of writing IDL code. For example, if you
indent aline using the Tab key, the following lines will be indented as well. Various
keyboard shortcuts are available aswell. IDL Editor window key definitions are listed
in the following table.

Key Key Key .
(Windows) (Motify | (Macintosh) Action

-1l 1l S Move cursor |eft or right one
character, up or down one
line.

Ctrl+ Ctrl+B Option+ — Move |eft one word.

Ctrl+ - Ctrl+F Option+ — Move right one word.

End Ctrl+E Command+ - | Moveto end of current line.

Home Ctrl+A Command+~ | Move to beginning of
current line.

Page Down Page Down Page Down Move to next screen.

Page Up Page Up Page Up Move to previous screen.

Shift+Tab Move cursor one tab-stop
left.

Ctrl+Home Ctrl+Home Home Move to beginning of file.

Ctrl+End Ctrl+End End Moveto end of file.

Ctrl+Vv Delete word to the left of the

Cursor.

Ctrl+K Delete word to the right of
the cursor.

Ctrl+K Delete everything in the

current lineto theright of the
Cursor.

Using the IDL Editor

Table 9-1: IDL Editor window key definitions

Building IDL Applications

Chapter 9: Introduction to IDL Programming 247
Key Key Key .
(Windows) (Motif) (Macintosh) Action
Ctrl+U Delete everything in the
current line to the left of the
Cursor.
Delete Ctrl+D Delete Delete the next character.
Ctrl+U Make selected text (or the
character to theright of the
cursor) lower-case.
Ctrl+Shift+U Make selected text (or the
character to theright of the
CUrsor) upper-case.
Ctrl+z Alt+Z Command+Z Undo last action.
Ctrl+Y Alt+Y Command+Z Redo last undone action.
Ctrl+X Alt+X Command+X Cut selection to clipboard.
Ctrl+Shift+Y Cut line containing cursor to
clipboard.
Ctrl+C Alt+C Command+C Copy selection to clipboard.
Ctrl+Vv Alt+V Command+V Paste contents of clipboard
at current cursor location.
Ctrl+] Find matching (, {, or
[character.
Tab Tab Tab Indent text lines one tab-stop
right.
Command+A | Select All.
Command+M | Comment line.
Command+, Un-comment line.

Text Selection Modes (Windows Only)

Table 9-1: IDL Editor window key definitions

IDL Editor windows provide three ways of selecting text: stream mode, line mode,

and column mode.

Building IDL Applications

Using the IDL Editor

248 Chapter 9: Introduction to IDL Programming

e Stream mode selects text in a stream, beginning with the first character
selected and ending with the last character, just asif you were reading the text.

computing environment for the
Els] vizualization of data.

Figure 9-1: A selected stream of text.

e Linemode selects full lines of text.

di=zplay techniques.

Figure 9-2: Text selection using Line Mode.

e Column mode sdl ects text from one screen column to the next. Selecting text in
column mode is similar to drawing a rectangle around the text you wish to
select.

IDL integ
with nums ;
di=zplay technigues.

Figure 9-3: Column Mode text selection.

Switch between the three modes by clicking the right mouse button while positioned
over an Editor window. Select the “ Selection Mode” option to access a pulldown
menu with the three text selection modes. The option with a check mark by it isthe
currently selected text selection mode. If you have text already selected, the selected
areawill change to reflect the new mode.

Using the IDL Editor Building IDL Applications

Chapter 9: Introduction to IDL Programming 249

Chromacoded Editor (Windows Only)

TheIDL Editor in IDL for Windows supports chromacoding—different types of IDL
statements appear in different colors. To change the default colors used for different
types of IDL statements, select File - Preferences, and select the Editor tab.

Turning Chromacoding Off

By default, the Windows IDL Editor uses chromacoding. To turn off chromacoding,
select File - Preferences, select the Editor tab, and uncheck the “Enable colored
syntax” checkbox.

Functions/Procedures Menu

When you open afilein the IDL Editor, all functions and procedures defined in that
file are listed in the Functions/Procedures Menu. On Windows, this menu is located
on the IDLDE toolbar. On Matif, this menu is accessed through the () button in the
upper left corner of the Editor window. On Macintosh, this menu islocated at the
bottom of the Editor window.

Select a procedure or function from the drop-down list to move the cursor to the
beginning of that procedure or function. Thisis especialy useful for navigating large
program files containing multiple procedures and functions.

Using External Editors (Motif)

If you wish to use more sophisticated editing features on Motif platforms, you can
create an IDLDE macro to open afile that is currently open in the IDL Editor in
another editor such as emacs or vi. Use the following procedure to create a macro:

1. Select Macros - Edit menu to bring up the “Edit Macros” dialog box. You
can use this dialog to create, edit, or remove macros.

2. Completethefieldsin the “Edit Macros’ dialog:

* Name: The name that appearsin the “Macros’ list in the “ Edit Macros’
dialog. For example, enter “Edit in emacs.”

e Label: The name that appears on the M acr os menu. For example, enter

» Bitmap: The bitmap to use as the toolbar button label.

e Status bar text: The text that appears in the status bar when the mouse is
help over the menu item or toolbar button.

Building IDL Applications Using the IDL Editor

250 Chapter 9: Introduction to IDL Programming

» Tiptext: Thetext for the tooltip that appears when the mouse is held over
the toolbar button.

e |IDL command: The IDL command to execute when the macro is selected.
To create amacro for editing in Emacs, enter the following:

SPAW\, 'enacs +%. WP &

» Sdlect the“Menu” and/or “Toolbar” checkbox to specify whether the
macro will appear in the M acr os menu and/or the toolbar.

3. Createthe new macro by pressing the “Add” button. If you entered “emacs’ in
the Label field, anew “emacs’ macro is added to the Macros list.

4. Toadd amacro for editing in vi, repeat the above steps, but enter the following
inthe“IDL command” field:

SPAWN, 'xterm-e vi +% 9% &

To use the new macros, open the desired filein the IDL editor, then select the desired
M acr os menu item or toolbar button.

The IDLDE always checks if the current file has been externally modified before
using it. If afile was modified with an external editor, IDLDE notifies you, and asks
you to reload the file before using it (you can aso use the Revert to Saved option
from the File menu to reload the file).

Using the IDL Editor Building IDL Applications

Chapter 9: Introduction to IDL Programming 251
Creating a Simple Program

In this section, we'll create asimple “Hello World” program consisting of two .pro
files:

1. StarttheIDLDE.

2. Startthe IDL Editor by selecting File — New or clicking the New File button
on the tool bar.

3. Typethefollowing inthe IDL Editor window:

PRO hel | o_mai n
nane = "'
READ, nane, PROVPT='Enter Nanme: '
str = HELLO WHQ(nane)
PRI NT, str
END

4. To savethefile, select File » Save or click Save button on the toolbar. Save
the filewith the namehel | o_nwi n. pr o inthemain IDL directory (which the
Save As dialog should already show).

5. Open anew Editor window by selecting File - New, and enter the following
code:

FUNCTI ON hel | o_who, who
RETURN, 'Hello ' + who
END

6. Savethefileashel | o_who. prointhemain IDL directory.

We now have a simple program consisting of a user-defined procedure, which cals a
user-defined function.

Building IDL Applications Creating a Simple Program

252 Chapter 9: Introduction to IDL Programming
Compiling and Running Your Program

Before a procedure or function can be executed, it must be compiled. When a system
routine (afunction or procedure built into IDL, such as PLOT) is called, either from
the command line or from another procedure, IDL already knows about this routine
and compiles it automatically. When a user-defined function or procedureis called,
IDL must find the function or procedure and then compile it. When you enter the
name of an uncompiled user-defined procedure at the command line or call the
procedure from another procedure, IDL searches the current directory for
filename.pro, then filename.sav, where filename is the name of the procedure. If no
fileisfound in the current directory, IDL searches each directory specified by 'PATH.
(For more on the IDL path, see“!PATH” in Appendix D of the IDL Reference Guide.)
If afileisfound, IDL automatically compiles the contents and executes the function
or procedure that has the same name as the file specified (excluding the suffix).

There are several ways to compile a procedure or function:

» If thefileisopeninthe IDL Editor, select Compile from the Run menu or
click the Compile button on the toolbar.

e Usethe . COWI LE executive command at the IDL command line.

» Enter the name of the procedure or function at the IDL command line.
Multiple procedures and/or functions can be defined in the same .pro file, so if
the file defines more than one procedure or function, only the procedure or
function with the name entered at the command line will be compiled (and
subsequently executed). For example, suppose afile named pr ocl. pro
contains the following procedure definitions:

PRO procl

PRINT, 'This is procl'
END
PRO proc2

PRINT, 'This is proc?2'
END
PRO proc3

PRI NT, 'This is proc3'
END

If you enter proc1 at the IDL command line, only the pr oc1 procedure will
be compiled and executed. If you enter pr oc2 or pr oc3 at the command line,
you will get an error informing you that you attempted to call an undefined
procedure.

Compiling and Running Your Program Building IDL Applications

Chapter 9: Introduction to IDL Programming 253

If you select the Compile button on the IDLDE toolbar or you enter

. COWPI LE pr oc1 at thecommand line, all three procedures will be compiled.
You can then enter either pr oc1, pr oc2, or pr oc3 at the command line to
execute the corresponding procedure.

In our “Hello World” example, we have a user-defined procedure that contains a call
to auser-defined function. If you enter the name of the user-defined procedure,
hello_main, at the command line, IDL will compile and execute the hello_main
procedure. After you provide the requested input, a call to the hello_who function is
made. IDL searchesfor hel | o_who. pr o, and compiles and executes the function.

In general, the name of the IDL program file should be the same as the name of the
last procedure or function within thisfile. Thislast routine is usually the main
routine, which calls all the other routines within the IDL program file. Using this
convention for your IDL program files ensures that all the related routines within the
file are compiled before being called by the last main routine.

Many program fileswithin the IDL distribution use this formatting style. For
example, open the program file for the XLOADCT procedure, xI oadct . pr o, inthe
IDL Editor. Thisfileisintheli b/ utilities subdirectory of the IDL distribution.
Thisfile contains several routines. The main routine (XLOADCT) is at the bottom of
thefile. When thisfileis compiled, the IDL Output Log notes all the routines within
thisfile that are compiled:

| DL> . COWPI LE XLOADCT

% Conpi | ed nodul e: XLCT_PSAVE.

% Conpi | ed modul e: XLCT_ALERT_CALLER
% Conpi | ed nodul e: XLCT_SHOW

% Conpi | ed nodul e: XLCT_DRAW CPS.

% Conpi | ed nodul e: XLCT_TRANSFER.

% Conpi | ed nmodul e: XLOADCT_EVENT.

% Conpi | ed nodul e: XLOADCT.

Since these routines are now compiled, you can run XLOADCT:

| DL> XLQADCT

% Conpi | ed nodul e: XREGQ STERED.
% Conpi | ed nodul e: LOADCT.

% Conpi | ed nodul e: FI LEPATH.

% Conpi | ed nodul e: CW BGROUP.
% Conpi | ed nmodul e: XMANAGER.

The remaining compiled modules are other IDL program files contained within the
distribution. These files (routines) are called within the XLOADCT routine.

Building IDL Applications Compiling and Running Your Program

254 Chapter 9: Introduction to IDL Programming

Tip
When editing a program file containing multiple functions and/or proceduresin the
IDL Editor, you can easily move to the desired function or procedure by selecting
its name from the Functions/Procedures Menu. See * Functions/Procedures Menu”
on page 249 for more information.

Compilation Errors

If an error occurs during compilation, the error is reported in the Output Log of the
IDLDE. For example, because the END statement is commented out, the following
user-defined procedure will result in a compilation error:

PRO procedur e_wi t hout _END

PRINT, ‘Hello Wrld

; END
When trying to compile this procedure (after saving it into afile named
procedur e_wi t hout _END. pr o), you will receive the following error in the IDL
Ouput Log:

I DL> . COWPI LE procedure_wi t hout _END

% End of file encountered before end of program
% 1 Conpilation errors in nodul e PROCEDURE_ W THOUT_END.

The location of this error is aso reported in the IDL Editor (for Windows and
Macintosh, but not for Motif):

* IntheWindows IDL Editor, ared dot appears to the left of each line that
contains an error.

e On Macintosh, errors are reported in the IDL Error Window. You can use this
window to locate a specific error in the IDL Editor by double-clicking on the
stop (hand) icon to the left of this error, then ared triangle will appear in the
IDL Editor to the left of the line containing the error.

The Windows and Macintosh IDL Output Logs will also contain aline noting the file
and linesin which the errors occur.

Compiling and Running Your Program Building IDL Applications

Chapter 9: Introduction to IDL Programming 255

Commenting Your IDL Code

In IDL, the semicolon is the comment character. When IDL encounters the
semicolon, it ignores the remainder of theline. It is good programming practice to
fully annotate programs with comments. There are no execution-time or space
penalties for commentsin IDL.

A comment can exist on aline by itself, or can follow another IDL statement, as
shown below:

: This is a comrent
COUNT = 5 ; Set the variable COUNT equal to 5.

Building IDL Applications Commenting Your IDL Code

256 Chapter 9: Introduction to IDL Programming

Commenting Your IDL Code Building IDL Applications

Chapter 10:

Assignment

The following topics are covered in this chapter:

Overview of the Assignment Statement .. 258
Assigning aValueto aVariable 260
Assigning Scalarsto Array Elements 261

Building IDL Applications

Assigning Arraysto Array Elements

Avoid Using Range Subscripts
Using Associated File Variables

257

258 Chapter 10: Assignment
Overview of the Assignment Statement

The assignment statement stores avalue in avariable. There are three forms of the
assignment statement, as shown in the following table.

Subscript | Expression

Syntax Structure Structure Effect
Variable = Expression | None All Expression is stored in Variable.
Variable[Subscripts] = | Scalar Scalar Expression isstored in asingle
Expression element of Variable
Scalar Array Expression array isinserted in
Variable array.
Array Scalar Expression scalar is stored in
designated elements of Variable.
Array Array Elements of Expression are stored
in designated elements of Variable.
Variable[Range] = Range Scalar When possible, range subscripts
Expression should be avoided. See “Avoid
Using Range Subscripts’ on
page 264.

Scalar isinserted into subarray.

Range Array When possible, range subscripts
should be avoided. See “Avoid
Using Range Subscripts’ on

page 264.

If Variable[Range] and Array are
the same size, elements of Array
specified by Range are inserted in
Variable. lllegd if Variable] Range]
and Array are different sizes.

Table 10-1: Types of Assignment Statements

Overview of the Assignment Statement Building IDL Applications

Chapter 10: Assignment 259

Note
Inversions of IDL prior to version 5.0, parentheses were used to enclose array

subscripts. While using parentheses to enclose array subscripts will continue to
work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See“Array Subscript Syntax: [] vs. ()” on page 86 for additional details.

Building IDL Applications Overview of the Assignment Statement

260 Chapter 10: Assignment
Assigning a Value to a Variable

The most basic form of the assignment statement is as follows:
Vari abl e = Expression

The old value of the variable, if any, is discarded, and the value of the expressionis
stored in the variable. The expression on the right side can be of any type or structure.

Examples

Some examples of the basic form of the assignment statement are as follows:

; Set mmax to val ue.
mmeax = 100 * X + 2.987

;nane becones a scalar string variabl e.
name = ' Mary'

;Make arr a 100-el enent, floating-point array.
arr = FLTARR(100)

;Discard points O to 49 of arr. It is now a 50-el enent array.
arr = arr[50: *]

Assigning a Value to a Variable Building IDL Applications

Chapter 10: Assignment 261
Assigning Scalars to Array Elements

The second type of assignment statement has the following form:
Vari abl e[Subscripts] = Scal ar _Expressi on

Here, asingle element of the specified array is set to the value of the scalar
expression. The expression can be of any type and is converted, if necessary, to the
type of the variable. The variable on the left side must be either an array or afile
variable. Some examples of assigning scalar expressions to subscripted variables are:

:Set el enment 100 of data to val ue.
dat a[100] = 1.234999

;Store string in an array. nane nmust be a string array or an error
Wl result.
nane[i ndex] = 'Joe'

;Set elenent [X, Y] of the 2-dinensional array inmage to the val ue
contained in pixel.
i mge[X, Y] = pixel

Using Array Subscripts

The subscripted variable can have either a scalar or array subscript. If the subscript
expression is an array, the scalar value is stored in the elements of the array whose
subscripts are elements of the subscript array. For example, the following statement
zeroes the four specified elements of data: date[3], data]5], data] 7] and data[9]:

data[[3, 5, 7, 9]] =0

The subscript array is converted to longword type if necessary before use. Elements
of the subscript array that are negative, or greater than the highest subscript of the
subscripted array, are clipped to the target array boundaries. Note that a common
error isto use a negative scalar subscript (e.g., A[-1]). Using this type of subscript
causes an error. Negative array subscripts (e.g., A[[-1]]) do not cause errors.

The WHERE function can be used to select array elements to be changed. For
example, the statement:

dat al WHERE(data LT 0)] = -1

sets al negative elements of dat a to -1 without changing the positive elements. The
result of the function, WHERE(data LT 0), is a vector composed of the subscripts of
the negative elements of data. Using this vector as a subscript changes only the
negative elements.

Building IDL Applications Assigning Scalars to Array Elements

262 Chapter 10: Assignment
Assigning Arrays to Array Elements

The fourth type of assignment statement is of the following form:
Vari abl e[Subscripts] = Array

Note that thisform is syntactically identical to the second type of assignment
statement, but that the expression on the right-hand-side is an array instead of a
scalar. Thisform of the assignment statement is used to insert one array into another.

The array expression on theright isinserted into the array appearing on the left side
of the equal sign starting at the point designated by the subscripts.
Examples
For example, to insert the contents of an array called A into array B, starting at point
B[13, 24], use the following statement:
B[13, 24] = A

If A isa5-column by 6-row array, elements B[13:17, 24:29] are replaced by the
contents of array A.

In the next example, a subarray is moved from one position to another:
B[100, 200] = B[200: 300, 300: 400]
A subarray of B, specifically the columns 200 to 300 and rows 300 to 400, is moved
to columns 100 to 200 and rows 200 to 300, respectively.
Using Array Subscripts
If the subscript expression applied to the variable is an array and an array appears on
the right side of the statement:
Vari abl e[Array] = Array

then elements from the right side are stored in the elements designated by the
subscript vector. Only those elements of the subscripted variable whose subscripts
appear in the subscript vector are changed. For example, the statement

B[2, 4 6]] =[4, 16, 36]

is equivalent to the following series of assignment statements:

B[2] = 4
B[4] = 16
B[6] = 36

Assigning Arrays to Array Elements Building IDL Applications

Chapter 10: Assignment 263

Subscript elements are interpreted as if the subscripted variable is a vector. For
example, if A isal10 x nmatrix, the element A[i, j] has the subscript i+10*j. The
subscript array is converted to longword type before use, if necessary.

Asdescribed previously for the second form of assignment statement, elements of the
subscript array that are negative or larger than the highest subscript are clipped to the
target array boundaries. Note that a common error isto use a hegative scalar
subscript (e.g., A[-1]). Using this type of subscript causes an error. Negative array
subscripts (e.g., A[[-1]]) do not cause errors.

As another example, assume that the vector DATA contains data elements and that a
data drop-out is denoted by a negative value. In addition, assume that there are never
two or more adjacent drop-outs. The following statements replace all drop-outs with
the average of the two adjacent good points:

; Subscript vector of drop-outs.
bad = WHERE(data LT 0)

; Repl ace drop-outs with average of previous and next point.
data[bad] = (data[bad - 1] + data[bad + 1]) / 2

In this example, the following actions are performed:

* WeusethelLT (lessthan) operator to create an array, with the same dimensions
asdat a, that contains a 1 for every element of dat a that is less than zero and
azero for every element of dat a that is zero or greater. We use this “ drop-out
array” as aparameter for the WHERE function, which generates a vector that
contains the one-dimensional subscripts of the elements of the drop-out array
that are nonzero. The resulting vector, stored in the variable bad, contains the
subscripts of the elements of dat a that are less than zero.

* Theexpression data[bad - 1] is a vector that contains the subscripts of the
pointsimmediately preceding the drop-outs; while similarly, the expression
data[bad + 1] is avector containing the subscripts of the points immediately
after the drop-outs.

e The average of these two vectorsis stored in data]bad], the points that
originally contained drop-outs.

Building IDL Applications Assigning Arrays to Array Elements

264 Chapter 10: Assignment
Avoid Using Range Subscripts

It is possible to use range subscriptsin an assignment statement, however, when
possible, you should avoid using range subscriptsin favor of using scalar or array
subscripts. Thistype of assignment statement takes the following form:

Vari abl e[Subscri pt _Range] = Expression

A subscript range specifies a beginning and ending subscript. The beginning and
ending subscripts are separated by the colon character. An ending subscript equal to
the size of the dimension minus one can be written as *.

For example, arr[1:J] denotes those pointsin the vector ar r with subscripts between |
and Jinclusive. | must be less than or equal to J and greater than or equal to zero. J

denotes the points in arr from arr[I] to the last point and must be less than the size of
the dimension arr [1:*]. See Chapter 5, “Arrays’ for more details on subscript ranges.

Examples

Assuming the variable B isa 512 x 512-byte array, some examples are as follows:

;Store 1 in every elenent of the i-th row
array[*, 1] =1

;Store 1 in every elenent of the j-th col um.
array[J, *] =1

;Zero all the rows of colums 200 through 220 of array.
array[200: 220, *] =0

;Store the value 100 in all the elements of array.
array[*] = 100

When possible, you should avoid using range subscripts in favor of using scalar or
array subscripts. Consider the following example:

A = | NTARR(10)

X =1[1,1,1]

PRINT, "A =", A
Sl ow way:

t =SYSTI ME(1) & FOR i =0L, 100000 DO A[4:6] = X &
PRI NT, ' Sl ow way: ', SYSTI ME(1)-t

PRINT, "A =", A

Correct way is 4 tinmes faster!!:

t =SYSTI ME(1) & FOR i =0L, 100000 DO a[4] = X &
PRI NT, 'Fast way: ', SYSTIME(1)-t

PRINT, "A =", A

Avoid Using Range Subscripts Building IDL Applications

Chapter 10: Assignment 265

IDL Prints:
A= 0 0 0 0 0 0 0 0 0 0
Sl ow way: 0. 47000003
A= 0 0 0 0 1 1 1 0 0 0
Fast way: 0. 12100005

A= 0 0 0 O 1 1 1 0 0 O

The statement Al 4] = X, where X isathree-element array, causes IDL to start at
index 4 of array A, and replace the next three elementsin A with the elementsin X.

Because of theway it isimplemented in IDL, A] 4: 6] = Xismuch less efficient
than Al 4] = X.

Building IDL Applications Avoid Using Range Subscripts

266 Chapter 10: Assignment

Using Associated File Variables

A specia case occurs when using an associated file variable in an assignment
statement. For additional information regarding the ASSOC function, see ASSOC in
the IDL Reference Guide. When afile variable is referenced, the last (and possibly
only) subscript denotes the record number of the array within the file. Thislast
subscript must be a simple subscript. Other subscripts and subscript ranges, except
the last, have the same meaning as when used with normal array variables.

Animplicit extraction of an element or subarray in a data record can aso be
performed. For example:

;Variabl e A associates the file open on unit 1 with the records of
; 200- el ement, fl oating-point vectors.
A = ASSOC(1, FLTARR(200))

;Then, X is set to the first 100 points of record nunber 2, the
;third record of the file.
X = A[0:99, 2]

;Set the 24th point of record 16 to 12.
A[23, 16] = 12

;lncrement points 10 to 199 of record 12. Points 0 to 9 of the
;record remai n unchanged.
A[10, 12] = A[10:*, 12]+1

Using Associated File Variables Building IDL Applications

Chapter 11:

Program Control

The following topics are covered in this chapter:

OvErvIeW . ..o 268 LoopStatements 279
Compound Statements 269 Jump Statements L. 286
Conditional Statements 272

Building IDL Applications 267

Chapter 11: Program Control

IDL contains various constructs for controlling the flow of program execution, such
as conditional expressions and looping mechanisms. These constructs include:

268
Overview
Compound Statements
e BEGIN...END
Conditional Statements
* |R.THEN..ELSE
« CASE
* SWITCH
L oop Statements
e FOR..DO
* REPEAT...UNTIL
* WHILE..DO
Jump Statements
« BREAK
» CONTINUE
« GOTO
Overview

Building IDL Applications

Chapter 11: Program Control 269
Compound Statements

Many of the language constructs that we will discussin this chapter evaluate an
expression, then perform an action based on whether the expression istrue or false,
such as with the | F statement:

| F expression THEN st at enent
For example, we would say “If X equals 1, then set Y equal to 2" asfollows:
IF (XEQ1) THEN Y = 2

But what if we want to do more than one thing if X equals 1? For example, “If X
equalsl, setY equal to 2 and print the value of Y.” If wewroteit asfollows, then the
PRINT statement would always be executed, not just when X equals 1:

IF (XEQ1) THEN Y = 2
PRINT, Y

IDL provides a container into which you can put multiple statements that are the
subject of a conditional or repetitive statement. This container is called a
BEGIN...END block, or compound statement. A compound statement is treated as a
single statement and can be used anywhere a single statement can appear.

BEGIN...END

The BEGIN...END statement is used to create ablock of statements, whichissimply
agroup of statementsthat are treated as a single statement. Blocks are necessary
when more than one statement is the subject of a conditional or repetitive statement.

For example, the above code could be written as follows:

IF (X EQ 1) THEN BEG N
Y=2
PRINT, Y

END

All the statements between the BEGIN and the END are the subject of the IF
statement. The group of statements is executed as a single statement. Syntactically, a
block of statementsis composed of one or more statements of any type, started by
BEGIN and ended by an END identifier. To be syntactically correct, we should have
ended our block with ENDIF rather than just END:

IF (X EQ 1) THEN BEG N
Y =2
PRI NT, Y

ENDI F

Building IDL Applications Compound Statements

270 Chapter 11: Program Control

Thisisto ensure proper nesting of blocks. The END identifier used to terminate the
block should correspond to the type of statement in which BEGIN is used. The
following table lists the correct END identifiers to use with each type of statement.

END
Statement o Example
Identifier P
ELSE BEGIN ENDELSE IF (0) THEN A=1 ELSE BEG N
A=2
ENDELSE
FOR variable=init, limit DO BEGIN ENDFOR FOR i =1,5 DO BEG N
PRINT, array[i]
ENDFCOR
IF expression THEN BEGIN ENDIF IF (0) THEN BEG N
A=1
ENDI F
REPEAT BEGIN ENDREP REPEAT BEG N
A=A* 2
ENDREP UNTIL A GT B
WHILE expression DO BEGIN ENDWHILE VHI LE NOT EOF(1) DO BEG N
READF, 1, A B, C
ENDVHI LE
LABEL: BEGIN END LABEL1: BEG N
PRI NT, A
END
case_expression: BEGIN END CASE nane OF
'Moe': BEG N
PRI NT, ' St ooge'
END
ENDCASE
switch_expression: BEGIN END SW TCH nane OF
'Moe': BEG N
PRI NT, ' St ooge'
END
ENDSW TCH

Table 11-1: Types of END Identifiers

Note
CASE and SWITCH aso have their own END identifiers. CASE should aways be
ended with ENDCASE, and SWITCH should aways be ended with ENDSWITCH.

Compound Statements Building IDL Applications

Chapter 11: Program Control 271

The IDL compiler checks the end of each block, comparing it with the type of the
enclosing statement. Any block can be terminated by the generic END, but no type
checking is performed. Using the correct type of END identifier for each block makes
it easier to find blocks that you have not properly terminated.

Listings produced by the IDL compiler indent each block four spaces to the right of
the previous level to make the program structure easier to read. (See .RUN inthe IDL
Reference Guide for details on producing program listings with the IDL compiler.)

Building IDL Applications Compound Statements

272 Chapter 11: Program Control

Conditional Statements

Most useful applications have the ability to perform different actionsin response to
different conditions. This decision-making ability is provided in the form of
conditional statements.

IF...THEN...ELSE

The IF statement is used to conditionally execute a statement or a block of
statements. The syntax of the |F statement is asfollows:

I F expression THEN statenment [ELSE statenent]
or

I F expression THEN BEG N
statenents

ENDI F [ELSE BEG N
statements

ENDELSE]

The expression after the “IF” is called the condition of the IF statement. This
expression (or condition) is evaluated, and if true, the statement following the
“THEN?” is executed. For example:

A=2
IF AEQ2 THEN PRINT, "Ais two'

Here, IDL prints“A is two”.

If the expression evaluates to a false value, the statement following the “ EL SE”
clause is executed:

A=3
IF AEQ2 THEN PRINT, "Ais two' ELSE PRINT, "Ais not two'

Here, IDL prints“A i s not two”.

Control passesimmediately to the next statement if the condition is false and the
EL SE clause is hot present.

Note
Another way to write an IF... THEN...EL SE statement is with a conditional
expression using the ?: operator. For more information, see “ Conditional
Expression” on page 30.

Conditional Statements Building IDL Applications

Chapter 11: Program Control 273

Definition of True and False

The condition of the | F statement can be any scalar expression. The definition of true
and false for the different data typesis as follows:

» Byte, integer, and long: odd integers are true, even integers are false.

« Floating-Point, double-precision floating-point, and complex: non-zero values
aretrue, zero values are false. Theimaginary part of complex numbersis
ignored.

e String: any string with a nonzero length istrue, null strings are false.

In the following example, the logical statement for the condition is a conjunction of
two conditions:

IF (LON GT -40) AND (LON LE -20) THEN ...

If both conditions (LON being larger than —40 and less than or equal to —20) aretrue,
the statement following the THEN is executed.

Using Statement Blocks with the IF Statement

The THEN and EL SE clauses can bein the form of ablock (or group of statements)
with the delimiters BEGIN and END (see “BEGIN...END” on page 269). To ensure
proper nesting of blocks, you can use ENDIF and ENDEL SE to terminate the block,
instead of using the generic END. Below isan example of the use of blockswithin an
|F statement.

IF (I NE 0.0) THEN BEG N
ENDI F ELSE BEG N
ENDELSE

Nesting IF Statements

| F statements can be nested in the following manner:

IF P1 THEN S1 ELSE $
IF P2 THEN S2 ELSE $

IF PN THEN SN ELSE SX

If condition Pl istrue, only statement S1 is executed; if condition P2 istrue, only
statement S2 is executed, etc. If none of the conditions are true, statement SX will be
executed. Conditions are tested in the order they are written. The construction above
issimilar to the CASE statement except that the conditions are not necessarily
related.

Building IDL Applications Conditional Statements

274 Chapter 11: Program Control

CASE

The CASE statement is used to select one, and only one, statement for execution,
depending upon the value of the expression following the word CASE. This
expression is called the case selector expression. The general form of the CASE
statement is as follows:

CASE expression OF
expression: statenent

expressi on: statenent
[ELSE: statenent]
ENDCASE

Each statement that is part of a CASE statement is preceded by an expression that is
compared to the value of the selector expression. CASE executes by comparing the
CASE expression with each selector expression in the order written. If amatchis
found, the statement is executed and control resumes directly below the CASE
statement.

The EL SE clause of the CASE statement is optional. If included, it matches any
selector expression, causing its code to be executed. For thisreason, it is usually
written asthe last clause in the CASE statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an ELSE clauseis not
included and none of the values match the selector, an error occurs and program
execution stops.

The BREAK statement can be used within CASE statements to force an immediate
exit from the CASE.

Example

An example of the CASE statement follows:

CASE nanme OF
"Larry': PRINT, 'Stooge 1'
' Moe' : PRI NT, ' St ooge
"Curly': PRINT, 'Stooge 3
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

Another example shows the CASE statement with the number 1 as the selector
expression of the CASE. Oneis equivalent to true and is matched against each of the
conditionals.

N

CASE 1 OF
(X GT 0) AND (X LE 50): Y =12 * X + 5
(X GT 50) AND (X LE 100): Y = 13 * X + 4

Conditional Statements Building IDL Applications

Chapter 11: Program Control 275

(X LE 200): BEG N
Y=14 * X- 5
Z=X+Y
END
ELSE: PRINT, 'X has an illegal value.'
ENDCASE

In this CASE statement, only one clause is selected, and that clause isthe first one
whose valueis equal to the value of the case selector expression.

Tip
Each clauseistested in order, so it is most efficient to order the most frequently
selected clauses first.

SWITCH

The SWITCH statement is used to select one statement for execution from multiple
choices, depending upon the value of the expression following the word SWITCH.
This expression is called the switch selector expression.

The general form of the SWITCH statement is as follows:

SW TCH Expressi on OF
Expr essi on: Statenent

Expressi on: Statenent
[ELSE: Statenent]
ENDSW TCH

Each statement that is part of a SWITCH statement is preceded by an expression that
is compared to the value of the selector expression. SWITCH executes by comparing
the SWITCH expression with each selector expression in the order written. If amatch
isfound, program execution jumps to that statement and execution continues from
that point. Unlike the CASE statement, execution does not resume below the
SWITCH statement after the matching statement is executed. Whereas CASE
executes at most one statement within the CASE block, SWITCH executes the first
matching statement and any following statementsin the SWITCH block. Once a
match is found in the SWITCH block, execution falls through to any remaining
statements. For this reason, the BREAK statement is commonly used within
SWITCH statements to force an immediate exit from the SWITCH block.

The EL SE clause of the SWITCH statement is optional. If included, it matches any
selector expression, causing its code to be executed. For thisreason, it isusualy
written as the last clause in the switch statement. The EL SE statement is executed
only if none of the preceding statement expressions match. If an EL SE clauseis not

Building IDL Applications Conditional Statements

276 Chapter 11: Program Control

included and none of the values match the selector, program execution continues
immediately below the SWITCH without executing any of the SWITCH statements.

CASE Versus SWITCH
The CASE and SWITCH statements are similar in function, but differ in the
following ways:

» Execution exits the CASE statement at the end of the matching statement. By
contrast, execution within a SWITCH statement falls through to the next
statement. The following tableillustrates this difference:

CASE SWITCH
x=2 x=2
CASE x OF SWTCH x OF
1: PRI NT, 'one' 1: PRI NT, 'one'
2. PRINT, 'two' 2. PRINT, 'two'
3: PRINT, 'three' 3: PRINT, 'three'
4: PRINT, 'four' 4: PRINT, 'four'
ENDCASE ENDSW TCH
IDL Prints: IDL Prints:
t wo t wo
t hree
f our

Table 11-2: CASE versus SWITCH

Because of this difference, the BREAK statement is often used within
SWITCH statements, but less frequently within CASE. (For more information
on using the BREAK statement, see “BREAK” on page 286.) For example, we
can add aBREAK statement to the SWITCH example in the above table to
make the SWITCH example behave the same as the CASE example:

x=2
SWTCH x OF
1: PRINT, 'one'
2: BEGAN
PRI NT, 'two'
BREAK
END
3: PRINT, 'three'
4: PRINT, 'four'
ENDSW TCH

Conditional Statements Building IDL Applications

Chapter 11: Program Control 277

IDL Prints;
two

* |f there are no matches within a CASE statement and thereis no EL SE clause,
IDL issues an error and execution halts. Failure to match is not an error within
a SWITCH statement. Instead, execution continues immediately following the
SWITCH.

The decision on whether to use CASE or SWITCH comes down deciding which of
these behaviors fits your code logic better. For example, our first example of the
CASE statement looked like this:

CASE nanme OF
"Larry': PRINT, 'Stooge
' Mbe': PRI NT, ' Stooge
"Curly': PRINT, 'Stooge 3
ELSE: PRI NT, 'Not a Stooge'
ENDCASE

N =

We could write this example using SWITCH:

SWTCH nane OF
"Larry': BEG N
PRI NT, ' Stooge 1'
BREAK
END
' Moe' : BEG N
PRI NT, ' Stooge 2'
BREAK
END
"Curly': BEG N
PRI NT, ' Stooge 3'
BREAK
END
ELSE: PRI NT, 'Not a Stooge'
ENDSW TCH

Clearly, this code can be more succinctly expressed using a CASE statement.

There may be other cases when the fall-through behavior of SWITCH suits your
application. The following example illustrates an application that uses SWITCH
more effectively. The DAYS_OF _XMAS procedure accepts an integer argument
specifying which of the 12 days of Christmasto start on. It starts on the specified day,
and prints the presents for all previous days. If we enter 3, for example, we want to
print the presents for days 3, 2, and 1. Therefore, the fall-through behavior of
SWITCH fits this problem nicely. The first day of Christmas requires special

Building IDL Applications Conditional Statements

278 Chapter 11: Program Control

handling, so we use aBREAK statement at the end of the statement for case 2 to
prevent execution of the statement associated with case 1.

PRO DAYS_OF XMAS, day

I F (N_ELEMENTS(day) EQ 0) THEN DAY = 12

IF ((day LT 1) OR (day GT 12)) THEN day = 12

day name = ['"First', '"Second', 'Third', 'Fourth', "Fifth', $
"Sixth', 'Seventh', 'Eighth', "Ninth', 'Tenth',$
"Eleventh', 'Twel fth']

PRINT, 'On The ', day_nane[day - 1], $
Day OF Christmas My True Love Gave To Me:'

SW TCH day of

12: PRINT, ' Twel ve Drunmers Drumm ng'
11: PRINT, ' El even Pipers Piping'
10: PRINT, ' Ten Lords A-Leaping'
9: PRINT, Ni ne Ladi es Danci ng'
8: PRINT, ' Ei ght Mai ds A-M I ki ng'
7: PRINT, ' Seven Swans A- Swi nmi ng'
6: PRINT, ' Si x Ceese A-Laying'
5. PRINT, ' Five Gold Rings'
4: PRI NT, ' Four Calling Birds'
3: PRINT, ' Three French Hens'
2: BEGAN
PRI NT, ' Two Turtl edoves'
PRI NT, ' And a Partridge in a Pear Tree!'
BREAK
END
1: PRINT, ' A Partridge in a Pear Tree!'
ENDSW TCH

END

If we pass the value 3 to the DAYS_OF_XMAS procedure, we get the following
output:

On The Third Day O Christmas My True Love Gave To Me:
Three French Hens
Two Turtl edoves
And a Partridge in a Pear Tree!

Achieving this behavior with CASE would be difficult.

Conditional Statements Building IDL Applications

Chapter 11: Program Control 279
Loop Statements

One of the most common programming tasks is to perform the same set of statements
multiple times. Rather than repeat a set of statements again and again, aloop can be
used to perform the same set of statements repeatedly.

Note
IDL's array capahilities can often be used in place of loops to write much more
efficient programs. For example, if you want to perform the same calculation on
each element of an array, you could write aloop to iterate over each array element:

array | NDGEN(10)

FORi = 0,9 DO BEG N
array[i] = array[i] * 2

ENDFOR

Thisis much less efficient than using IDL’s built-in array capabilities:

array | NDGEN(10)
array = array * 2

FOR...DO

The FOR statement is used to execute one or more statements repeatedly, while
incrementing or decrementing a variable with each repetition, until a condition is
met. It is analogous to the DO statement in FORTRAN.

In IDL, there are two types of FOR statements. one with an implicit increment of 1
and the other with an explicit increment. If the condition is not met the first time the
FOR statement is executed, the subject statement is not executed.

FOR Statement with an Increment of One
The FOR statement with an implicit increment of one is written as follows:
FOR Vari abl e = Expression, Expression DO Statenent

The variable after the FOR is called the index variable and is set to the value of the
first expression. The subject statement is executed, and the index variableis
incremented by 1 until the index variable is larger than the second expression. This
second expression is called the limit expression. Complex limit and increment
expressions are converted to floating-point type.

Building IDL Applications Loop Statements

280 Chapter 11: Program Control

Warning
The data type of the index variable is determined by the type of the initial value
expression. Keep this fact in mind to avoid the following:

FOR I = 0, 50000 DO ...

This loop does not produce the intended result. Converting the longword constant
50,000 to a short integer yields —15,536 because of truncation. The loop is not
executed. The index variable'sinitial valueis larger than the limit variable. The
loop should be written as follows:

FOR | = OL, 50000 DO ...

Note also that changing the data type of an index variable within aloop is not
allowed, and will cause an error.

Warning
Also be aware of FOR loops that are entered but are not terminated after the
expected number of iterations, because of the truncation effect. For example, if the
index value exceeds the maximum value for the initial datatype (and sois
truncated) when it is expected instead to exceed the specified index limit, then the
loop will continue beyond the expected number of iterations.

The following FOR statement continues infinitely:
FOR i = 0B, 240, 16 DO PRI NT, i

The problem occurs because the variable i isinitialized to a byte type with 0B.
After the index reaches the limit value 240B, i isincremented by 16, causing the
value to go to 256B, which isinterpreted by IDL as 0B, because of the truncation
effect. Asaresult, the FOR loop “wraps around” and the index can never be
exceeded.

Examples

A simple FOR statement:
FORI| =1, 4 DOPRINT, |, 172

This statement produces the following output:

Loop Statements Building IDL Applications

Chapter 11: Program Control 281

AWN PR
(SR N

1

Theindex variable | isfirst set to an integer variable with avalue of one. The call to
the PRINT procedure is executed, then the index isincremented by one. Thisis
repeated until the value of | is greater than four at which point execution continues at
the statement following the FOR statement.

The next example displays the use of ablock structure (instead of a single statement)
as the subject of the FOR statement. The example is a common process used for
computing a count-density histogram. (Note that a HISTOGRAM functionis
provided by IDL.)

FOR K=0, N- 1 DOBEGN

C=AK
H ST(C) = HIST(C)+1
ENDFOR

The next example displays a FOR statement with floating-point index and limit
expressions, where X is set to a floating-point variable and steps through the values
(15,25, ..., 10.5):

FOR X = 1.5, 10.5 DO'S = S + SQRT(X)

The indexing variables and expressions can be integer, longword, floating-point, or
double-precision. The type of the index variable is determined by the type of the first
expression after the “=" character.

Warning
Due to the inexact nature of | EEE floating-point numbers, using floating-point
indexing can cause “infinite loops” and other problems. This problem is also
manifested in both the C and FORTRAN programming languages. For example, the
numbers 0.1, 0.01, 1.6, and 1.7 do not have exact representations under the IEEE
standard. To see this phenomenon, enter the following IDL command:

PRINT, 0.1, 0.01, 1.6, 1.7, FORMAT='(f20.10)"

IDL prints the following approximations to the numbers we requested:
0. 1000000015

0. 0099999998

1. 6000000238
1. 7000000477

Building IDL Applications Loop Statements

282

Chapter 11: Program Control

See Accuracy & Floating-Point Operationsin the Using IDL manual for more
information about floating-point numbers.

FOR Statement with Variable Increment
The format of the second type of FOR statement is as follows:

FOR Vari abl e = Expression;, Expression,, Increment DO Statenent
Thisform is used when an increment other than 1 is desired.

The first two expressions describe the range of numbers for the index variable. The
Increment specifies the increment of the index variable. A negative increment allows
the index variable to step downward.

Examples

The following examples demonstrate the second type of FOR statement.

; Decrenment, K has the values 100., 99., ..., 1.
FOR K = 100.0, 1.0, -1 DO...

;lncrement by 2., loop has the values 0., 2., 4., ..., 1022.
FOR loop = 0, 1023, 2 DO...

;Divide range frombottomto top by 4.
FOR mid = bottom top, (top - bottom)/4.0 DO ...

Warning
If the value of the increment expression is zero, an infinite loop occurs. A common
mistake resulting in an infinite loop is a statement similar to the following:

FORX =0, 1, .1 DO....

The variable X isfirst defined as an integer variable because the initial value
expression is an integer zero constant. Then the limit and increment expressions are
converted to the type of X, integer, yielding an increment value of zero because .1
converted to integer typeis 0. The correct form of the statement is:

FORX=0., 1, .1 DO....

which defines X as a floating-point variable.

Loop Statements Building IDL Applications

Chapter 11: Program Control 283

Sequence of the FOR Statement
The FOR statement performs the following steps:

1. Thevalue of thefirst expression is evaluated and stored in the specified
variable, which is called the index variable. The index variableis set to the
type of this expression.

2. Thevalue of the second expression is evaluated, converted to the type of the
index variable, and saved in atemporary location. Thisvalueiscalled the limit
value.

3. Thevalue of the third expression, called the step value, is evaluated, type-
converted if necessary, and stored. If omitted, avalue of 1 isassumed.

4. If theindex variable is greater than the limit value (in the case of a positive
step value) the FOR statement is finished and control resumes at the next
statement. Similarly, in the case of a negative step value, if theindex variable
isless than the limit value, control resumes after the FOR statement.

5. The statement or block following the DO is executed.
6. The step valueis added to the index variable.
7. Steps4, 5, and 6 are repeated until the test of Step 4 fails.

REPEAT...UNTIL

REPEAT...UNIL loops are used to repetitively execute a subject statement until a
condition istrue. The condition is checked after the subject statement is executed.
Therefore, the subject statement is always executed at least once.

The syntax of the REPEAT statement is as follows:
REPEAT st atement UNTIL expression
or

REPEAT BEG N
statenents
ENDREP UNTI L expression

Examples

The following example finds the smallest power of 2 that is greater than B:

A=1
B =10
REPEAT A = A* 2 UNTIL A GT B

Building IDL Applications Loop Statements

284 Chapter 11: Program Control

The subject statement can also be in the form of a block:

A=1

B = 10

REPEAT BEG N
A=A*2

ENDREP UNTIL A GT B

The next example sorts the elements of ARR using the inefficient bubble sort
method. (A more efficient way to sort elementsisto use IDL's SORT function.)
;Sort array.

REPEAT BEG N
;Set flag to true.

NOSWAP = 1
FORI =0, N- 2 DOIF arr[l] GI arr[l + 1] THEN BEG N
; Swapped el ements, clear flag.
NOSWAP = 0
T=arr[l] &arr[l] =arr[l + 1] & arr[l +1] =T
ENDI F

; Keep going until nothing is noved.
ENDREP UNTI L NOSWAP

WHILE...DO

WHILE...DO loops are used to execute a statement repeatedly while a condition
remainstrue. The WHILE...DO statement is similar to the REPEAT...UNTIL
statement except that the condition is checked prior to the execution of the statement.

The syntax of the WHILE...DO statement is as follows:
WHI LE expressi on DO st at enent
or

VWH LE expressi on DO BEG N
statenents
ENDWHI LE

When the WHILE statement is executed, the conditional expressionistested, and if it
istrue, the statement following the DO is executed. Control then returns to the
beginning of the WHILE statement, where the condition is again tested. This process
is repeated until the condition is no longer true, at which point the control of the
program resumes at the next statement.

In the WHILE statement, the subject is never executed if the condition isinitialy
fase.

Loop Statements Building IDL Applications

Chapter 11: Program Control 285

Examples

The following example reads data until the end-of-file is encountered:
WH LE NOT EOF(1) DO READF, 1, A B, C
The subject statement can also be in the form of a block:

VWH LE NOT EOF(1) DO BEG N
READF, 1, A B, C
ENDWHI LE

The next example demonstrates one way to find the first element of an array greater
than or equal to a specified value assuming the array is sorted into ascending order:
array = [2, 3, 5, 6, 10]

i =0 ;lInitialize index
n = N_ELEMENTS(array)

;Increment i until a point larger than 5 is found or the end of the
;array is reached:

VWH LE (array[i] LT 5) AND (i LT n) DOi =i + 1

PRINT, 'The first elenent >= 5 is elenent ', i

IDL Prints:
The first element >= 5 is el enent 2
Tip
Another way to accomplish the same thing is with the WHERE command, which is
used to find the subscripts of the points where ARR][1] is greater than or equal to X.
P = WHERE(arr GE X)

; Save first subscript:
I = P(0)

Building IDL Applications Loop Statements

286 Chapter 11: Program Control
Jump Statements

Jump statements can be used to modify the behavior of conditional and iterative
statements. Jump statements allow you to exit aloop, start the next iteration of aloop,
or explicitly transfer program control to a specified location in your program.

Statement Labels

Labels are the destinations of GOTO statements as well asthe ON_ERROR and
ON_IOERROR procedures. The label field is simply an identifier followed by a
colon. Label identifiers, as with variable names, consist of 1 to 15 aphanumeric
characters, and are case insensitive. The dollar sign ($) and underscore (_) characters
can appear after thefirst character. Some examples of labels are as follows:

LABEL1:
LOOP_BACK: A = 12
1 $QUIT: RETURN ; Comments are al |l owed.

BREAK

The BREAK statement provides a convenient way to immediately exit from aloop
(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to the
GOTO statement.

Example

This exampleillustrates a situation in which using the BREAK statement makes a
loop more efficient. In this example, we create a 10,000-element array of integers
from O to 9999, ordered randomly. Then we use aloop to find where in the array the
value 5 islocated. If the value is found, we BREAK out of the loop because there is
no need to check the rest of the array:

Note

This example could be written more efficiently using the WHERE function. This
example isintended only to illustrate how BREAK might be used.

; Create a random y-ordered array of integers
; fromO to 9999:

array = SORT(RANDOMJ(seed, 10000))
n = N_ELEMENTS(arr ay)

Find where in array the value 5 in | ocated:

Jump Statements Building IDL Applications

Chapter 11: Program Control 287

FOR i = 0,n-1 DO BEG N

IF (array[i] EQ 5) THEN BREAK
ENDFOR
PRI NT, i

We could write this loop without using the BREAK statement, but this would require
us to continue the loop even after we find the value we're looking for (or resort to
using a GOTO statement):

FORi =0, n-1 DO BEG N
IF (array[i] EQ 5) THEN found=i
ENDFOR

PRI NT, found

CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop. Whereas the BREAK
statement exits from aloop, the CONTINUE statement exits only from the current
loop iteration, proceeding immediately to the next iteration.

Note

Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command The two constructs are not related, and serve completely
different purposes.

Note

CONTINUE is not allowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does allow this.

Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10:

FOR I =1,10 DO BEG N
IF (I AND 1) THEN CONTINUE ; If odd, start next iteration
PRI NT, |
ENDFOR

Building IDL Applications Jump Statements

288 Chapter 11: Program Control

GOTO

The GOTO statement is used to transfer program control to a point in the program
specified by the label. The GOTO statement is generally considered to be a poor
programming practice that |eads to unwieldy programs. Its use should be avoided.
However, for those cases in which the use of a GOTO is appropriate, IDL does
provide the GOTO statement.

Note that using a GOTO to jump into the middle of aloop resultsin an error.

The syntax of the GOTO statement is as follows:
GOTO, Label

Warning
You must be careful in programming with GOTO statements. It is not difficult to

get into aloop that will never terminate, especialy if thereis not an escape (or test)
within the statements spanned by the GOTO.

Example

In the following example, the statement at label JUMPL is executed after the GOTO
statement, skipping any intermediate statements:

Goro, JUWPL

PRINT, '"Skip this' ; This statement is skipped
PRINT, "Skip this' ; This statenment is al so skipped
JUW1: PRINT, 'Do this'

The label can also occur before the GOTO statement that refers to the label, but you
must be careful to avoid an endless loop. GOTO statements are frequently the
subjects of |F statements, as in the following statement:

IF A NE G THEN GOTO, M STAKE

Jump Statements Building IDL Applications

Chapter 12:

Procedures and

Functions

The following topics are covered in this chapter:

OVEIVIEW ..ot 290
DefiningaProcedure. 201
DefiningaFunction.................. 293
Parameters 296
Using Keyword Parameters. 299
Keyword Inheritance 301

Building IDL Applications

Entering Procedure Definitions 306
How IDL ResolvesRoutines 308
Parameter Passing Mechanism 309
CalingMechanism 311
Setting Compilation Options 313
Advicefor Library Authors 315

289

290 Chapter 12: Procedures and Functions

Overview

Procedures and functions are self-contained modules that break large tasks into
smaller, more manageable ones. Maodular programs simplify debugging and
maintenance and, because they are reusable, minimize the amount of new code
required for each application.

New procedures and functions can be written in IDL and called in the same manner
as the system-defined procedures or functions from the keyboard or from other
programs. When a procedure or function is finished, it executesa RETURN
statement that returns control to its caller. Functions always return an explicit result.
A procedureis called by aprocedure call statement, while afunctionis called by a
function reference. For example, if ABC isaprocedure and XY Z isafunction, the
caling syntax is:

;Call procedure ABC with two parameters.
ABC, A 12

;Call function XYZ with one paraneter. The result of XYZ is stored
;in variable A
A = XYZ(d D)

Overview Building IDL Applications

Chapter 12: Procedures and Functions 291
Defining a Procedure

A sequence of one or more IDL statements can be given aname, compiled, and saved
for future use with the procedure definition statement. Once a procedure has been
successfully compiled, it can be executed using a procedure call statement
interactively from the terminal, from amain program, or from another procedure or
function.

The general format for the definition of a procedureis asfollows:

PRO Nane, Paraneterl, ..., Paranetern
; Statenments defining procedure
Statenent 1
St at emrent 2

; End of procedure definition.
END

The PRO statement must be the first line in a user-written IDL procedure.

Calling a user-written procedure that isin adirectory in the IDL search path (!PATH)
and has the same name as the prefix of the. SAV or . PROfile, causes the procedure to
be read from the disk, compiled, and executed without interrupting program
execution.

Building IDL Applications Defining a Procedure

292 Chapter 12: Procedures and Functions
Calling a Procedure

The syntax of the procedure call statement is asfollows:
Procedure_Name, Paraneter,, Paraneter,, ..., Parameter,

The procedure call statement invokes a system, user-written, or externally-defined
procedure. The parameters that follow the procedure's name are passed to the
procedure. When the called procedure finishes, control resumes at the statement
following the procedure call statement. Procedure names can be up to 128 characters
long.

Procedures can come from the following sources:
e System procedures provided with IDL.

» User-written procedures written in IDL and compiled with the .RUN
command.

e User-written proceduresthat are compiled automatically becausethey residein
directories in the search path. These procedures are compiled the first time
they are used. See “Defining a Function” on page 293.

* Procedureswrittenin IDL, that are included with the IDL distribution, located
in directories that are specified in the search path.

« Under many operating systems, user-written system procedures coded in
FORTRAN, C, or any language that follows the standard calling conventions,
which have been dynamically linked with IDL using the LINKIMAGE or
CALL_EXTERNAL procedures.

Example

Some procedures can be called without any parameters. For example:
ERASE

Thisisaprocedure call to a subroutine to erase the screen. There are no explicit
inputs or outputs. Other procedures have one or more parameters. For example, the
statement:

PLOT, Cl RCLE
callsthe PLOT procedure with the parameter CIRCLE.

Calling a Procedure Building IDL Applications

Chapter 12: Procedures and Functions 293
Defining a Function

A function is a program unit containing one or more IDL statements that returns a
value. This unit executes independently of itscaller. It hasits own local variables and
execution environment. Once a function has been defined, references to the function
cause the program unit to be executed. All functions return afunction value which is
given as a parameter in the RETURN statement used to exit the function. Function
names can be up to 128 characters long.

The general format of afunction definition is as follows:

FUNCTI ON Nane, Paraneter,, ..., Paraneter,
St at enent 4
St at enent ,

RETURN, Expression
END

Example
To define afunction called AVERAGE, which returns the average value of an array,

use the following statements:

FUNCTI ON AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)
END

Once the function AVERAGE has been defined, it is executed by entering the
function name followed by its arguments enclosed in parentheses. Assuming the
variable X contains an array, the statement,

PRI NT, AVERAGE(X"2)

squares the array X, passes this result to the AVERAGE function, and prints the
result. Parameters passed to functions are identified by their position or by a
keyword. See “Using Keyword Parameters’ on page 299.

Automatic Execution

IDL automatically compiles and executes a user-written function or procedure when
it isfirst referenced if:

1. The source code of the function isin the current working directory or in a
directory in the IDL search path defined by the system variable | PATH.

Building IDL Applications Defining a Function

294 Chapter 12: Procedures and Functions

2. The name of the file containing the function is the same as the function name
suffixed by .pro or .sav. Under UNIX, the suffix should be in lowercase |etters.

Note
IDL is case-insensitive. However, for some operating systems, IDL only checks for
the lowercase filename based on the name of the procedure or function. We
recommend that al filenames be hamed with lowercase.

Warning
User-written functions must be defined before they are referenced, unless they meet
the above conditions for automatic compilation or the function name has been
reserved by using the FORWARD_FUNCTION statement described below. This
restriction is necessary in order to distinguish between function calls and
subscripted variable references.

For information on how to access routines, see “ Executing Program Files’ in Chapter
2 of the Using IDL manual.

Forward Function Definition

Versions of IDL prior to version 5.0 used parentheses to indicate array subscripts.
Because function calls use parentheses as well, the IDL compiler is not able to
distinguish between arrays and functions by examining the statement syntax.

This problem has been addressed beginning with IDL version 5.0 by the use of square
brackets“[]” instead of parenthesesto specify array subscripts. See “Array Subscript
Syntax: [] vs. ()” on page 86 for adiscussion of the IDL version 5.0 and later syntax.
However, because parentheses are still allowed in array subscripting statements, the
need for a mechanism by which the programmer can “reserve” a name for afunction
that has not yet been defined remains. The FORWARD_FUNCTION statement
addresses this need.

As mentioned above, ambiguities can arise between function calls and array
references when a function has not yet been compiled, or thereis no file with the
same name as the function found in the IDL path.

For example, attempting to compile the IDL statement:
A = xyz(1l, COLOR=1)

Defining a Function Building IDL Applications

Chapter 12: Procedures and Functions 295

will cause an error if the user-written function XY Z has not been compiled and the
filenamexyz. pr o isnot found in the IDL path. IDL reports a syntax error, because
xyz isinterpreted as an array variable instead of afunction name.

This problem can be eliminated by using the FORWARD_FUNCTION statement.
This statement has the following syntax:

FORWARD_FUNCTI ON Nane;, Name,, ..., Namey

where Name is the name of afunction that has not yet been compiled. Any names
declared as forward-defined functions will be interpreted as functions (instead of as
variable names) for the duration of the IDL session.

For example, we can resolve the ambiguity in the previous example by adding a
FORWARD_FUNCTION definition:

; Define XYZ as the nane of a function that has not yet been
; conpi | ed.
FORWARD_FUNCTI ON XYZ

;1 DL now understands this statenent to be a function call instead
;of a bad variable reference.
a = XYZ(1, COLOR=1)

Note
Declaring a function that will be merged into IDL viathe LINKIMAGE command
with the FORWARD_ FUNCTION statement will not have the desired effect.
Routines merged via LINKIMAGE are considered by IDL to be built-in routines,
and thus need no compilation or declaration. They must, however, be merged with
IDL before any routines that call them are compiled.

Building IDL Applications Defining a Function

296

Chapter 12: Procedures and Functions

Parameters

The variables and expressions passed to the function or procedure fromits caller are
parameters. Actual parameters are those appearing in the procedure call statement or
the function reference. In the examples at the beginning of this section, the actual
parameters in the procedure call are the variable A and the constant 12, while the
actual parameter in the function call isthe value of the expression (C/ D) .

Formal parameters are the variables declared in the procedure or function definition.
The same procedure or function can be called using different actual parameters from
anumber of placesin other program units.

Correspondence of Formal and Actual Parameters

Parameters

The correspondence between the actual parameters of the caller and the formal
parameters of the called procedure is established by position or by keyword.

Positional Parameters

A positional parameter, or plain argument, is a parameter without a keyword. Just as
its name implies, the position of a positional parameter establishes the
correspondence—the n-th formal positional parameter is matched with the n-th actual
positional parameter.

Keyword Parameters

A keyword parameter, which can be either actual or formal, is an expression or
variable name preceded by a keyword and an equal sign (“=") that identifies which
parameter is being passed.

When calling aroutine with akeyword parameter, you can abbreviate the keyword to
its shortest, unambiguous abbreviation. Keyword parameters can also be specified by
the caller with the syntax /KEY WORD, which is equivalent to setting the keyword
parameter to 1 (e.g., KEYWORD = 1). The syntax /KEYWORD is often referred to,
in the rest of this documentation, as setting the keyword.

For example, a procedure is defined with a keyword parameter named TEST.
PRO XYZ, A, B, TEST =T

The caller can supply avalue for the formal (keyword) parameter T with the
following calls:

;Supply only the value of T. A and B are undefined inside the
; procedure.
XYZ, TEST = A

Building IDL Applications

Chapter 12: Procedures and Functions 297

; The value of Ais copied to fornmal paraneter T (note the
;abbreviation for TEST), Qto A, and Rto B
XyzZ, TE=A Q R

;Variable Qis copied to formal paranmeter A. B and T are undefi ned
;inside the procedure.
XYZ, Q

Note
When supplying keyword parameters for afunction, the keyword is specified inside
the parentheses:

result = FUNCTI ON(Argl, Arg2, KEYWORD = val ue)
Copying Parameters

When a procedure or function is called, the actual parameters are copied into the
formal parameters of the procedure or function and the module is executed.

On exit, viaa RETURN statement, the formal parameters are copied back to the
actual parameters, providing they were not expressions or constants. Parameters can
be inputs to the program unit; they can be outputs in which the values are set or
changed by the program unit; or they can be both inputs and outputs.

When a RETURN statement is encountered in the execution of a procedure or
function, control is passed back to the caller immediately after the point of the call. In
functions, the parameter of the RETURN statement is the result of the function.

Number of Parameters

A procedure or afunction can be called with fewer arguments than were defined in
the procedure or function. For example, if a procedure is defined with 10 parameters,
the user or ancther procedure can call the procedure with 0 to 10 parameters.

Parameters that are not used in the actual argument list are set to be undefined upon
entering the procedure or function. If values are stored by the called procedure into
parameters not present in the calling statement, these values are discarded when the
program unit exits. The number of actual parametersin the calling list can be found
by using the system function N_PARAMS. Usethe N_ELEMENTS function to
determineif avariable is defined.

Building IDL Applications Parameters

298

Chapter 12: Procedures and Functions

Example

Parameters

An example of an IDL function to compute the digital gradient of an image is shown
in the example below. The digital gradient approximates the two-dimensional
gradient of an image and emphasizes the edges.

This simple function consists of three lines corresponding to the three required
components of IDL procedures and functions: the procedure or function declaration,
the body of the procedure or function, and the terminating end statement.

FUNCTI ON GRAD, i mage
;Define a function called GRAD. Result is ABS(dz/dx) + ABS(dz/dy).

;Evaluate and return the result.
RETURN, ABS(image - SH FT(image, 1, 0)) + $
ABS(i mage- SHI FT(i mage, 0, 1))

; End of function.
END

The function has one parameter called IMAGE. There are no local variables. Local
variables are variables active only within amodule (i.e., they are not parameters and
are not contained in common blocks).

The result of the function is the value of the expression used as an argument to the
RETURN statement. Once compiled, the function is called by referring to it in an
expression. Two examples are shown below.

;Store gradient of Bin A
A = GRAD(B)

; Display gradient of | MAGE sum
TVSCL, CGRAD(abc + def)

Building IDL Applications

Chapter 12: Procedures and Functions 299
Using Keyword Parameters

A short example of afunction that exchanges two columns of a4 x 4 homogeneous,
coordinate-transformation matrix is shown below. The function has one positional
parameter, the coordinate-transformation matrix T. The caller can specify one of the
keywords XY EXCH, XZEXCH, or YZEXCH to interchange the xy, Xz, or yz axes of
the matrix. The result of the function is the new coordinate transformation matrix
defined below.

; Function to swap columms of T. XYEXCH swaps colums 0 and 1,
; XZEXCH swaps 0 and 2, and YZEXCH swaps 1 and 2.
FUNCTI ON SWAP, T, XYEXCH = xy, XZEXCH = xz, YZEXCH = yz

;Swap colums 0 and 1 if keyword XYEXCH is set.
| F KEYWORD_SET(XY) THEN S=[0,1] $

:Check to see if xz is set.
ELSE | F KEYWORD SET(XZ) THEN S=[0,2] $

;Check to see if yz is set.
ELSE | F KEYWORD _SET(YZ) THEN S=[1,2] $

;1f nothing is set, return
ELSE RETURN, T

; Copy matrix for result.
R=T

; Exchange two columms using matrix insertion operators and
; subscript ranges.

RIS[1], O] = T[S[0], *]
RIS[0], O] = T[S[1], *]
;Return resul t.
RETURN, R

END

Typical callsto SWAP are as follows:

Q = SWAP(! P. T, /XYEXCH)

Q = SWAP(Q / XYEX)

Q = SWAP(I NVERT(Z), YZ = 1)

Q= SWAP(Z, XYE=1 EQO, XZE = | EQ1, YZE = | EQ 2)

Note that keyword names can abbreviated to the shortest unambiguous string. The
last example sets one of the three keywords according to the value of the variable .

Building IDL Applications Using Keyword Parameters

300 Chapter 12: Procedures and Functions

This function exampl e uses the system function KEYWORD_SET to determineif a
keyword parameter has been passed and if it is nonzero. Thisis similar to using the
condition:

IF N_ELEMENTS(P) NE O THEN IF P THEN ...

to test if keywords that have a true/false value are both present and true.

Using Keyword Parameters Building IDL Applications

Chapter 12: Procedures and Functions 301
Keyword Inheritance

Keyword inheritance allows IDL routines to accept keyword parameters not defined
in their function or procedure declaration and pass them on to routinesthey call. This
greatly smplifies writing “wrapper” routines, which are variations of a system or
user-provided routine. Specifically, keyword inheritance allows your routinesto
accept keywords accepted by routines that it calls without explicitly handling each
keyword individually.

There are two distinct mechanisms to handle keyword inheritance: one to pass
keyword parameters by value, and another to pass keyword parameters by reference.

_EXTRA: Passing Keyword Parameters by Value

You can pass keyword parameters to called routines by value by adding the formal
keyword parameter “© EXTRA” (note the underscore character) to the definition of
your routine. Passing parameters by value means that you are giving the called
routine the contents of an existing IDL variable to work with. In turn, this means that
keyword parameters passed into a routine by value cannot be returned to the calling
routine — there is no variable name into which the value can be placed.

When aroutine is defined with the formal keyword parameter EXTRA, pairs of
unrecognized keywords and values are placed in an anonymous structure. The name
of each unrecognized keyword becomes a tag name, and the keyword val ue becomes
the tag value. Changesto this structure created by using the_ EXTRA keyword do not
affect variables in the calling program.

When the keyword EXTRA appearsin aprocedure or function call, its argument is
either a structure containing additional keyword/value pairs which are inserted into
the argument list, or astring array as described in the next section. The value of
_EXTRA can also be " undefined”, indicating that no additional keyword parameters
were passed.

_REF_EXTRA: Passing Keyword Parameters by Reference

You can pass keyword parameters to called routines by reference by adding the
formal keyword parameter © REF EXTRA” (note the underscore character) to the
definition of your routine. Passing parameters by reference meansthat you are giving
the called routine the name of an existing IDL variable to work with; IDL takes care
of keeping track of the value associated with the name. The values of keyword
parameters specified via_REF_EXTRA are not available to the routine that is
passing the keywords on.

Building IDL Applications Keyword Inheritance

302 Chapter 12: Procedures and Functions

When aroutine is defined with the formal keyword parameter REF EXTRA, pairs
of unrecognized keywords and values are placed in a storage location that is
accessible to both calling and called routines, and the keyword names are placed in an
IDL string array. The string array can be “deciphered” using the _EXTRA keyword,
which matches the names in the string with the “live” valuesin the storage location.
Thismeans that if the keywords specify IDL variables, the values of those variables
can be atered by any routine that has access to the variable via the keyword
inheritance mechanism. In this fashion, the values of keyword parameters can be
changed within a routine and passed back to the routine’s caller.

The “pass by reference” keyword inheritance mechanism is especially useful when
writing object methods, which may be inherited multiple times and which often wish
to change the value of variables available to the calling method. (The values of object
properties are one example of data that can profitably be shared by objects at various
levelsin an object hierarchy.)

Accepting Extra Keyword Parameters

While you must choose whether aroutine will pass extra keyword parameters by
value or by reference when defining the routine (specifying both _EXTRA and
_REF_EXTRA asformal parameters will cause an error), routines that accept extra
keyword parameters can use either the _EXTRA keyword or the_REF_EXTRA
keyword. However, it is not possible to both have access to the keyword values and
pass them along to called routines by reference within the same routine. This means
that any routine that needs access to the passed keyword parameters must use
_EXTRA inits definition statement, or define the keyword explicitly itself.

Selective Keyword Redirection

If extrakeyword parameters have been passed by reference, you can direct different
inherited keywords to different routines by specifying a string or array of strings
containing keyword names viathe EXTRA keyword. For example, suppose that we
write a procedure named SOMEPROC that passes extra keywords by reference:

PRO SOVEPROC, _REF_EXTRA = ex
ONE, EXTRA=[' MOOSE' , ' SQUI RREL']
TWO, _EXTRA=' SQUI RREL'

END

If we call the SOMEPROC routine with three keywords:
SOVEPROC, MOOSE=nmose, SQUI RREL=3, SPY=PTR_NEW noose)

e it will passthe keywords MOOSE and SQUIRREL and their values (the IDL
variable moose and the integer 3, respectively) to procedure ONE,

Keyword Inheritance Building IDL Applications

Chapter 12: Procedures and Functions 303

e itwill passthe keyword SQUIRREL at its value to procedure TWO,
e it will do nothing with the keyword SPY.

Choosing a Keyword Inheritance Mechanism

The “pass by reference” (REF_EXTRA) keyword inheritance mechanism was
introduced in IDL version 5.1, and in many casesis a good choice even if values are
not being passed back to the calling routine. Because the REF_EXTRA mechanism
does not create an IDL structure to hold the keyword/value pairs, overhead is dightly
reduced. Two situations lend themselves to use of the_ REF_ EXTRA mechanism:

1. You need to pass the values of keyword variables back from a called routine to
the calling routine.

2. Your routineisan “inner loop” routine that may be called many times. If the
routine is called repeatedly, the savings resulting from not creating anew IDL
structure with each call may be significant.

It isimportant to remember that if the routine that is passing the keyword values
through also needs access to the values of the keywords for some reason, you must
use the “pass by value” (_EXTRA) mechanism.

Note
Updating existing routines that use EXTRA to use _ REF EXTRA isrelatively
easy. Since the called routine uses EXTRA to receive the extra keywords in either
case, you need only changethe EXTRA to _REF_EXTRA in the definition of the
calling routine.

By contrast, the “ pass by value” (EXTRA) keyword inheritance mechanismis
useful in the following situations:

1. Your routine needs access to the values of the extra keywords for some reason.

2. You want to ensure that variables specified as keyword parameters are not
changed by acalled routine.

Example: Keywords Passed by Value

One of the most common uses for the “ pass by value” keyword inheritance
mechanism is to create “wrapper” routines that extend the functionality of existing
routines. In most “wrapper” routines, there is no need to return values to the calling
routine — the aim is simply to implement the complete set of keywords available to
the existing routine in the wrapper routine.

Building IDL Applications Keyword Inheritance

304

Chapter 12: Procedures and Functions

For example, suppose that procedure TEST is awrapper to the PLOT command. The
text of such a procedure is shown below:

PRO TEST, a, b, _EXTRA = e, COLOR = col or
PLOT, a, b, COLOR = color, _EXTRA = e
END

The procedure definition:
PRO TEST, a, b, _EXTRA = e, COLOR = col or

places unrecognized keywords (e.g., any keywords other than COLOR) and their
valuesinto the variable “e”. If there are no unrecognized keywords, e will be
undefined.

When procedure TEST is called with the following command:
TEST, x, y, COLOR=3, LINESTYLE = 4, THI CK=5

variable “€’, within TEST, contains an anonymous structure with the value:
{ LINESTYLE: 4, THICK: 5}

These keyword/value pairs are then be passed from TEST to the PLOT routine using
the EXTRA keyword:

PLOT, a, b, COLOR = color, _EXTRA = e

Note that keywords passed into aroutine via_ EXTRA override previous settings of
that keyword. For example, the call:

PLOT, a, b, COLOR = color, _EXTRA = {COLOR 12}

specifies a color index of 12 to PLOT.

Example: Keywords Passed by Reference

The “pass by reference” keyword inheritance mechanism allows you to change the
value of avariable in the calling routine's context from within the routine. To
demonstrate the difference between EXTRA and REF EXTRA, consider the
following simple example procedures:

PRO TEST1, _EXTRA = ex
HELP, _EXTRA = ex
END

PRO TEST2, _REF EXTRA = ex
HELP, EXTRA = ex
END

Keyword Inheritance Building IDL Applications

Chapter 12: Procedures and Functions 305

Both TEST1 and TEST?2 are simple wrappers to the HEL P procedure. Observe the
result when we call each routine, specifying OUTPUT as an extra keyword
parameter, then use the HEL P procedure again to determine the value of the output
variable:

TEST1, QUTPUT = out & HELP, out

IDL prints:
% At TEST1 2 /dev/tty
% $MAI N$
EX UNDEFI NED = <Undefi ned>

Conpi | ed Procedures:
$MAIN$ TEST1
Conpi | ed Functi ons:

Now run TEST2:
TEST2, OUTPUT = out & HELP, out
IDL prints:
ouT STRI NG = Array][8]

Building IDL Applications Keyword Inheritance

306 Chapter 12: Procedures and Functions
Entering Procedure Definitions

Procedures and functions are compiled using the .RUN or .COMPILE executive
commands. The format of these commandsis as follows:

.RUN [File; , Filey, ...]
.COWPILE [File; , Filey, ...]

From 1 to 10 files, each containing one or more program units, can be compiled. For
more information, see .RUN and .COMPILE in the IDL Reference Guide.

To enter program text directly from the keyboard, smply enter .RUN at the

IDL> prompt. IDL will prompt with the “-” character, indicating that it is compiling
adirectly entered program. Aslong asIDL requires more text to complete a program
unit, it prompts with the “-" character. Rather than executing statements immediately
after they are entered, IDL compiles the program unit as awhole.

Procedure and function definition statements cannot be entered in the single-
statement mode, but must be prefaced by either .RUN or .RNEW.

The first non-empty line the IDL compiler reads determines the type of the program
unit: procedure, function, or main program. If the first non-empty lineisnot a
procedure or function definition statement, the program unit is assumed to be amain
program. The name of the procedure or function is given by the identifier following
the keyword PRO or FUNCTION. If a program unit with the same name is aready
compiled, it is replaced by the new program unit.

Note Regarding Functions

User-defined functions, with the exception of those contained in directories specified
by the IDL system variable 'PATH, must be compiled before the first reference to the
function is compiled. Thisis necessary because the IDL compiler is unable to
distinguish between areference to a variable subscripted with parentheses and a call
to a presently undefined user function with the same name. For example, in the
statement

A = XYZ(5)
itisimpossibleto tell by context alone if XYZ isan array or afunction.
Note

Inversions of IDL prior to version 5.0, parentheses were used to enclose array
subscripts. While using parentheses to enclose array subscripts will continue to

Entering Procedure Definitions Building IDL Applications

Chapter 12: Procedures and Functions 307

work asin previous version of IDL, we strongly suggest that you use bracketsin all
new code. See “Array Subscript Syntax: [] vs. ()” on page 86 for additional details.

When IDL encounters references that may be either afunction call or a subscripted
variable, it searches the current directory, then the directories specified by !PATH, for
files with names that match the unknown function or variable name. If one or more
files matching the unknown name exist, IDL compiles them before attempting to
evaluate the expression. If no function or variable with the given name exists, IDL

displays an error message.
There are several waysto avoid this problem:

e Compilethe lowest-level functions (those that call no other functions) first,
then higher-level functions, and finally procedures.

* Placethe function in afile with the same name as the function, and place that
filein one of the directories specified by !PATH.

¢ Usethe FORWARD_FUNCTION definition statement to inform IDL that a
given name refersto afunction rather than a variable. See “Forward Function
Definition” on page 294.

e Manually compile al functions before any reference, or use
RESOLVE_ROUTINE or RESOLVE_ALL to compile functions.

Building IDL Applications Entering Procedure Definitions

308

Chapter 12: Procedures and Functions

How IDL Resolves Routines

When IDL encounters a call to afunction or procedure, it must find the routine to
call. To do this, it goes through the following steps. If agiven step yields a callable
routine, IDL arranges to call that routine and the search ends at that point:

1

If the routine is known to be a built in intrinsic routine (commonly referred to
as asystemroutine), then IDL callsthat system routine.

If auser routine written in the IDL language with the desired name has already
been compiled, IDL callsthat routine.

If afile with the name of the desired routine (and ending with the filename
suffix . pr o) existsin the current working directory, IDL assumes that thisfile
contains the desired routine. It arrangesto call a user routine, but does not
compilethefile. Thefilewill be compiled when IDL actually needsit. In other
words, it iscompiled at run time when IDL actually attemptsto call the
routine, not when the code for the call is compiled.

IDL searches the directories given by the |PATH system variable for afile
with the name of the desired routine ending with the filename suffix . pr o. If
such afile exists, IDL assumes that this file contains the desired routine. It
arrangesto call a user routine, but does not compile thefile, as described in the
previous step.

If the above steps do not yield a callable routine, IDL either assumes that the
nameis an array (due to the ambiguity inherent in allowing parenthesis to
indicate either functions or arrays) or that the desired routine does not exist
(See Chapter 5, “Arrays’ for adiscussion of thisambiguity). In either case, the
result is not a callable routine.

How IDL Resolves Routines Building IDL Applications

Chapter 12: Procedures and Functions 309
Parameter Passing Mechanism

Parameters are passed to IDL system and user-written procedures and functions by
value or by reference. It isimportant to recognize the distinction between these two
methods.

e EXpressions, constants, system variables, and subscripted variable references
are passed by value.

e Variables are passed by reference.

Parameters passed by value can only be inputs to program units. Results cannot be
passed back to the caller by these parameters. Parameters passed by reference can
convey information in either or both directions. For example, consider the following
trivial procedure:

PRO ADD, A, B
A=A+B
RETURN

END

This procedure adds its second parameter to the first, returning the result in the first.
The call

ADD, A, 4

adds 4 to A and stores the result in variable A. The first parameter is passed by
reference and the second parameter, a constant, is passed by value.

The following call does nothing because a value cannot be stored in the constant 4,
which was passed by value.

ADD, 4, A
No error messageisissued. Similarly, if ARR isan array, the call
ADD, ARR[5], 4

will not achieve the desired effect (adding 4 to element ARR[5]), because subscripted
variables are passed by value. The correct, though somewhat awkward, method is as

follows:
TEMP = ARR] 5]
ADD, TEMP, 4

ARR[5] = TEMP

Building IDL Applications Parameter Passing Mechanism

310 Chapter 12: Procedures and Functions

Note
IDL structures behave in two distinct ways. Entire structures are passed by
reference, but individual structure fields are passed by value. See “ Parameter
Passing with Structures’ on page 105 for additional details.

Parameter Passing Mechanism Building IDL Applications

Chapter 12: Procedures and Functions 311
Calling Mechanism

When a user-written procedure or function is called, the following actions occur:

1. All of the actual arguments in the user-procedure call list are evaluated and
saved in temporary locations.

2. Theactual parameters that were saved are substituted for the formal
parameters given in the definition of the called procedure. All other variables
local to the called procedure are set to undefined.

3. Thefunction or procedureis executed until aRETURN or RETALL statement
is encountered. Procedures also can return on an END statement. The result of
auser-written function is passed back to the caller by specifying it asthe value
of aRETURN statement. RETURN statementsin procedures cannot specify a
return value.

4. All local variablesin the procedure, those variables that are neither parameters
nor common variables, are deleted.

5. The new values of the parameters that were passed by reference are copied
back into the corresponding variables. Actual parameters that were passed by
value are deleted.

6. Control resumes in the calling procedure after the procedure call statement or
function reference.

Recursion

Recursion (i.e., aprogram calling itself) is supported for both procedures and
functions.

Example

Hereis an example of an IDL procedure that reads and plots the next vector from a
file. Thisexampleillustrates using common variables to store values between calls, as
local parameters are destroyed on exit. It assumes that the file containing the dataiis
open on logical unit 1 and that the file contains a number of 512-element, floating-
point vectors.

; Read and plot the next record fromfile 1. If RECNO is specified,
;set the current record to its value and plot it.
PRO NXT, recnho

; Save previous record number.

Building IDL Applications Calling Mechanism

312 Chapter 12: Procedures and Functions

COVWON NXT_COM | astrec

; Set record nunber if paranmeter is present.
I F N_PARAMS(0) GE 1 THEN | astrec = recno

;Define LASTREC if this is first call.
| F N_ELEMENTS(| astrec) LE O THEN | astrec = 0

:Define file structure.
AA = ASSOC(1, FLTARR(512))

; Read and plot record.
PLOT, AA[l astrec]

Increment record for next tine.
|astrec = lastrec + 1

RETURN A
END

Once the user has opened the file, typing NXT will read and plot the next record.
Typing NXT, N will read and plot record number N.

Calling Mechanism Building IDL Applications

Chapter 12: Procedures and Functions 313
Setting Compilation Options

The COMPILE_OPT statement allows the author to give the IDL compiler
information that changes some of the default rules for compiling the function or
procedure within which the COMPILE_OPT statement appears. The syntax of
COMPILE_OPT isasfollows:

COMPILE_OPT opt, [,0pt,, ..., opt,]
where opt,, is any of the following:

e |DL2— A shorthand way of saying:
COWPI LE_OPT DEFI NT32, STRI CTARR

* DEFINT32 — IDL should assume that lexical integer constants are the 32-bit
LONG typerather than the default of 16-bit integers. This takes effect from the
point where the COMPILE_OPT statement appears in the routine being
compiled.

« HIDDEN — Thisroutine should not be displayed by HEL P, unless the FULL
keyword to HELP is used. This directive can be used to hide helper routines
that regular IDL users are not interested in seeing.

A side effect of making aroutine hidden isthat IDL will not print a“ Compile
module” message for it when it is compiled from the library to satisfy acall to
it. This makes hidden routines appear built in to the user.

e OBSOLETE — If the user has'WARN.OBS _ROUTINES set to True,
attempts to compile a call to this routine will generate warning messages that
thisroutine is obsolete. This directive can be used to warn people that there
may be better ways to perform the desired task.

* STRICTARR — While compiling thisroutine, IDL will not allow the use of
parenthesis to index arrays, reserving their use only for functions. Square
brackets are then the only way to index arrays. Use of this directive will
prevent the addition of a new function in future versions of IDL, or new
libraries of IDL code from any source, from changing the meaning of your
code, and is an especially good ideafor library functions.

Use of STRICTARR can eliminate many uses of the
FORWARD_FUNCTION definition.

Research Systems recommends the use of
COWPI LE_OPT 1 DL2

Building IDL Applications Setting Compilation Options

314 Chapter 12: Procedures and Functions

in all new code intended for use in areusable library. We further recommend the use
of

COWPI LE_OPT idl 2, H DDEN

in all such routines that are not intended to be called directly by regular users (e.g.
helper routines that are part of alarger package).

Setting Compilation Options Building IDL Applications

Chapter 12: Procedures and Functions 315
Advice for Library Authors

An ordinary end user programmer needs only to solve his or her own problemsto the
desired level of quality, reusability, and robustness. Lifeis more difficult for alibrary
author. In addition to the challenges facing any programmer, library authors face
additional challenges:

e The structure and organization of the library needs to encourage reuse and
generality.

e Library code must be more robust than the usual program. Stability of
implementation, and especially of interface, are very important.

* Errors must be gracefully handled whenever possible. See Chapter 17,
“Controlling Errors’ for more on error control.

e Themost useful libraries are written to work correctly on awide variety of
platforms, without requiring their usersto be aware of the details.

* Documentation must be provided, or the library will not find users.

e Libraries must be able to co-exist with other code over which they have no
control. They must not to alter the global environment in ways that cause
conflicts. In doing this, they must also take care to prefix the names of all
routines, common blocks, systems variables, and any other global resources
they use. This prevents a given library from conflicting with other libraries on
the same system, and protects the library from changes to IDL that may occur
in newer releases.

The need to use a unique prefix for the namesin your library is very important. New
releases of IDL occur on aregular schedule. These new rel eases contain new
routines, system variables, common blocks, and other globally visible items. If one of
these new names is the same as a name used in your library, the conflict will prevent
your library from being usable with that new version until you take steps to change
the troublesome name. Thisis difficult for you and inconvenient for your users. The
use of aproper prefix eliminates thisrisk and makes it easier for your library to work
with new versions of IDL without the need to take specia action with each new IDL
release.

In selecting a prefix for your library, you should select aname that is short,
mnemonic, and unlikely to be chosen by others. For example, such a name might use
the name of your organization or project in an abbreviated form.

Building IDL Applications Advice for Library Authors

316 Chapter 12: Procedures and Functions

Non-prefixed names, and names prefixed by “IDL” are reserved by RSI. New names
of these forms can and will appear without warning in new versions of IDL, and
should be avoided when naming new libraries. Failure to use prefixed naming can
lead to considerable difficulty once the library is established. It isimportant to
establish a naming convention early and enforce its systematic use throughout.

Advice for Library Authors Building IDL Applications

Part lll: Creating
Applications in IDL

Chapter 13:

Creating IDL

Projects

This chapter describes the following topics.

OVEIVIEW ..ot 320
Whereto Store the Filesfor aProject 324
CreatingaProject 326
Opening, Closing, and Saving Projects . . . 328
Modifying Project Groups 329
Adding, Moving, and Removing Files ... 332
Working with FilesinaProject 335

Building IDL Applications

Setting the Options for a Project
Selecting the Build Order
Running an Application from a Project . . . 349
Compiling an Application from aProject . 346

BuildingaProject 347
ExportingaProject 350
319

320

Chapter 13: Creating IDL Projects

Overview

IDL Project allows you to easily develop applicationsin IDL for distribution among
other developers, colleagues, or users who have IDL. If you want to develop
applications for users who do not have IDL previously installed on their computer,
contact your Research System sal es representatives for more information on how you
can distribute an IDL Runtime version.

Working with an IDL Project allows you to easily prepare your IDL application for
distribution among other devel opers, colleagues, or users. You can organize, manage,
compile, run, and create distributions of all of your application files from within the
IDL Project interface. An IDL Project simplifies the process of preparing your
application for distribution by offering avisual interface to application files and by
automatically creating the script necessary for distributing a Runtime version of IDL.
Whether you have existing files that you want to package as an application or you are
building an application from the ground up, IDL Project offers the flexibility and
functionality you need in a devel opment environment.

Access to all Files in Your Application

An DL Project has an easy to use visual interface that allows clear organization to al
of the required files you need for your IDL application. Thisincludes source files,
datafiles, imagefiles, or any other files your application will need to run. By default,
an IDL Project contains the following categories for your files:

» IDL source codefiles (. pr o)

e GUI files(. pr c) created with IDL GUIBUilder
» Datafiles

* Imagefiles

e Other files (helpfiles, . sav files, etc.)

You can aso create your own folders or rename existing folders to customize your
IDL Project.

Working with an IDL Project

Overview

An IDL Project makesit easy to add, remove, move, edit, compile, and run your
application. Additionally, Project saves all of your workspace information including
breakpoints set in source code. Since breakpoints are saved when you save your
project, this alleviates the need to reset them every time you open a source code file

Building IDL Applications

Chapter 13: Creating IDL Projects 321

inyour project. If you save and exit your project with open files, those same fileswill
be automatically opened when you re-open the project.

You can easily accessfilesin your project by simply double-clicking on them. Source
(. pro) filesare opened in the IDL Editor and . pr ¢ (IDL GUIBuilder) files are
opened in the IDL GUIBuilder. By holding down CTRL and left-clicking or by
holding down SHIFT and left-clicking, you can select multiple filesin the IDL
Project window. You can then edit, move, compile, delete, or set the properties of
mutlitple files at one time.

Compiling and Running Your Application

Compiling and running applications is fast and easy. Through the Project menu, you
can compile al of your sourcefiles or just the files that you have modified before
running your application.

Build Your Application

This feature allows you to quickly test your application. Building your application
createsan IDL . sav file that contains al of the programsin your application. If you
have. pr c (IDL GUIBUIlder) filesin your project, they will also be compiled and the
generated source (.pro) and the event (* _event cb. pr o) fileswill be automatically
added to your IDL Project.

Exporting Your Applications

Once you have completed your application, you can quickly and easily create a
distribution for your application so that you can distribute it to colleagues or
customers. There are options for exporting either compiled code or source code. All
your source code or compiled code (. sav files), IDL GUIBuilder files, datafiles, and
image files are copied to a directory you specify.

You can aso create an IDL Runtime distribution to include with your application. If
you areinterested in sharing your application with userswho do not have IDL, please
contact your Research Systems sal es representative to discuss the options available to
you.

The IDL Project Interface

The IDL Project window displays the contents of your current project and allows you
to manipulate your project.

Building IDL Applications Overview

322 Chapter 13: Creating IDL Projects

Note

If you are not using your IDL Project, you can hide the IDL Project window by
selecting File - Preferences and then clicking the Layout tab. Under the Show
Windows section, deselect the Project checkbox. When you open or create an IDL

Project, the Project window will automatically be displayed and this preference will
be reset to selected.

If you click the plus sign (Windows and Motif) or the expand arrow (Macintosh) to
expand your project, you will seethe groupsin your project. If you click the plussign
(Windows and Motif) or the expand arrow (Macintosh) on afolder, you will see the
individual filesthat are grouped in that folder.

0 ="—"—"=mypnjpri=———_=08 newproj.prj - IDL #99935-1 - RS1 IDL fioating licenses [-[ox]
) Fle Edi Seach Fun Projct Macos Window Help
= | Project pomES |2 aea(zEm| &
- | Toobar\ EEEETEY)
] < File Path & BEORBr A
[Source =]
[T
[[3 pat
[» [Images
b L ot
~- .
~_ Project
Window

Figure 13-1: Project Window for Macintosh (left) and Windows (right)

If you have added afile to a project and then either removed or renamed it on your
system, your IDL Project will display anicon with ared X through it to denote that it
can no longer be found. For information on how to change the path of amissing file,
see “ Setting the Properties of aFile” on page 336.

Overview Building IDL Applications

Chapter 13: Creating IDL Projects

323

The IDL Project toolbar offers shortcuts to frequently used menu items. When you
have a project open, the toolbar is available to help you manage your project’s
properties.

) . Compile All Files
Project Options Run

Add/Remove Files Build / Display File Properties

BEBE®r 8

Figure 13-2: Project Toolbar
Example of a Project

A working example of aproject, demo_proj . prj, hasbeenincluded inthe
exanpl es directory.

Building IDL Applications

Overview

324 Chapter 13: Creating IDL Projects

Where to Store the Files for a Project

The directory structure you use for your application filesis an important
consideration when you plan to export your application. It isimportant to create a
directory structure which allows al files to be relative to the main project (.prj) file.
Even though you can add any file from any path to your project, the following
guidelines ensure that the application files will be found after you export your
project.

1. Createan organized directory structure containing all of your application
files. For example, you might create a directory structure similar to the
following:

_] Cimyproject
myproject.prj
] Source
) GuUl
] Data
] Images
;] Other

Figure 13-3: Example Directory Structure

Note

This example uses the same names as the default directory names displayed in the
Project window. See “Modifying Project Groups’ on page 329 for more
information on the types of files stored in these groups. You do not have to name
your directories in this manner. It is more important that all application files that
you plan on exporting are organized in your local project directory.

2. Keeptheproject file (.prj) at theroot level of all the other filesand
directoriesin your project. Asshown in the previous figure, the project file
mypr oj ect . prj isintheroot level directory nypr oj ect .

Where to Store the Files for a Project Building IDL Applications

Chapter 13: Creating IDL Projects 325

When a project’s files are exported, the files will be placed according to where they
areinrelationtothe. prj file, keeping the directory structure intact whenever
possible. All of the directories that are in the same directory asthe. prj filewill be
recreated when an IDL Project is exported.

If you have files that are stored outside of this hierarchy, they will be exported to the
top-level directory. If, for example, one of your files, i nt ert enp. dat , existsin

D: \ ot her pr oj \ dat a, when you export your project it will be placed in the
project’stop-level directory asfollows, C: \ nyproj ect\i nt ert enp. dat . This
may result in “File not found” errors when attempting to run your application after
exporting it.

For more information on exporting a project, see “ Exporting a Project” on page 350.

Building IDL Applications Where to Store the Files for a Project

326 Chapter 13: Creating IDL Projects
Creating a Project

To create a Project, complete the following steps:

1. Sedect File -~ New — Project (on Windows and Motif) or File . New
Project (on Macintosh). The New Project dialog is displayed.

2. Select the path and name of the project file. Click Open to create your project.
A . prj extension will automatically be appended to the name you enter. You
will seethat your project appears in the Project Window

3. Saveyour new project. Select File - Save Project.

Note
For Windows and Matif, you can only have one project open at atime. On
Macintosh, you can have multiple project windows open at the same time. Before
creating anew project on Windows or Motif, you must close any open projects.

After you have created your project, you'll see your project displayed in the Project
Window. You will see that 5 groups have been automatically created when you
created your project.

Groups | Build Order

Figure 13-4: IDL Project Window

Creating a Project Building IDL Applications

Chapter 13: Creating IDL Projects 327

The following table describes the purpose for each group:

Group Description
Source Stores IDL source code files (. pr o).
GUI Stores GUI files (. pr c) created using the IDL GUIBuilder.
Data Stores any datafiles.
Images Stores imagefiles.
Other Stores any other files that do not apply to the other groups.

Table 13-1: Project Group Descriptions

Building IDL Applications Creating a Project

328 Chapter 13: Creating IDL Projects
Opening, Closing, and Saving Projects

After you have created a project, you can open, save, or close a project.
Opening a Project

To open a project, complete the following steps:

1. For Windows and Motif, select File — Open Project. For Macintosh, select
File - Open.

2. Select the path and name of your project file.
Tip
IDL keepstrack of the most recently opened projects. You can usethe File -

Recent Projects menu (on Windows and Moatif) and File - Open Recent (on
Macintosh) to select a project to open.

Saving a Project
To save aproject, select File » Save Project.
Closing a Project

To close aproject, select File » Close Project.

Opening, Closing, and Saving Projects Building IDL Applications

Chapter 13: Creating IDL Projects 329
Modifying Project Groups

After you have created your project, you can edit the groups for that project. You can
Create a new group or rename, remove, move up or down, or set to filter specific file
types for the default groups.

Modifying Project Groups on Windows and UNIX

To edit the groups in your project, complete the following steps:
1. Select Project — Groups. The Project Groups dialog is displayed:

Project Groups

Groups:

b odify
Remove

W ave g

Marme:

LI B

|Snur-:e b ovee Down

File Filters [, zep.):
|".pro

Figure 13-5: Project Groups Dialog for Windows and UNIX

2. Through the Project Groups dialog, you can make the following changes:

e Createa New Group — Enter aname into the Name text field and enter
the desired file filter extensions, separated by commas, into the File Filters
field. Click New to create the new group.

¢ Renamea Group — Select the group that you want to rename. Edit the
group name in the Name field and then click M odify.

e MoveaGroup — Select agroup listed in the Groups list and click Move
Up or Move Down.

Building IDL Applications Modifying Project Groups

330 Chapter 13: Creating IDL Projects

* Remove a Group — Select the group you want to remove from the
Groups list and click Remove.

* ChangetheFileFilter for a Group — Enter file filter extension in the
form * .extension. If you want more than onefiletypeto beincluded in this
group, separate each extension with acomma. For example, to include
JPEG and PNG files, you would enter “*. j pg, *. png”.

Note
When afileis added to aproject, it is placed in the first group that meets the file
extension criteriathat is specified, with thefirst group being the uppermost group in
the Groups list. If you have an all-inclusive filter (*), such asthe “Other” group,
you must placeit at the bottom of the Groups list.

3. After you have completed making your changes, click OK to exit the Project
Groups dialog.

Modifying Project Groups on Macintosh

To edit the groupsin your project, complete the following steps:
1. Seect Project — Groups. The Groupsdialog is displayed:

= Groups———
Groups
i Source Group Name:
3 GUl -
& Dsta [source |
i Images Group File Filters (,;sep.): Modify
3 Other |*-IJI'IJ |
Same As...
Group File Types:
Cancel I 0K I

Figure 13-6: Project Groups Dialog for Macintosh

Modifying Project Groups Building IDL Applications

Chapter 13: Creating IDL Projects 331

2. Through the Project Groups dialog, you can make the following changes:

Note

Create a New Group — Enter a name into the Group Name text field.
Enter any filters you want for this group (see “Change the File Filter for a
Group” below). Click New to create the new group.

Rename a Group — Select the group that you want to rename. Edit the
group name in the Group Name field.

Move a Group — Select agroup listed in the Groupslist and drag it up or
down to the desired location.

Delete a Group — Select the group you want to remove from the Groups
list and click Delete.

Change the File Filter for a Group — There are two ways of specifying
filefilters:

By File Extension — Enter file filter extension in the Group File Filters
field in the form * .extension. If you want more than onefile type to be
included in this group, separate each extension with acomma. For
example, to include JPEG and PNG files, you would enter “*. j pg,

*. png”.

By File Creator/Type— Click in the Group File Types list box and click
Same As. Select afile that represents the File and Creator Type that you
want to include in thefilter. Click Open. The new filter displaysin the
Group File Types list box. If you have entered any file extension filters,
these will be processed before any file creator/type filters are processed.

When afileisadded to a project, it is placed in the first group that meets thefile
extension criteriathat is specified, with thefirst group being the uppermost group in
the Groups list followed by any file creator type listed in the Group File Typeslist.
If you have an all-inclusivefilter (*), such asthe “ Other” group, you must placeit at
the bottom of the Groups list.

3. After you have completed making your changes, click OK to exit the Project
Groups dialog.

Building IDL Applications Modifying Project Groups

332 Chapter 13: Creating IDL Projects
Adding, Moving, and Removing Files

After you have created a project, you can easily add, move, and remove application
files.

Adding Files

To add files to your project, complete the following steps:

1. Openyour project. Select File — Open Project. Select the path and name of
your project file.

2. Click Project — Add/Remove Files... (on Windows and Motif) or Project —
Add Files... (on Macintosh). The Add/Remove Filesdialog is displayed.

Current directory
e Y =l & e

E:i myproject. pri

Folder/File listinthe —— p»
current directory

File to add/remove \
File hame: |

Filter for listing different P | filesoipe [IDL Fies [pro. e, pi) =l
file types

Select to add a file to — g Grawe
a specific group

Current Files in project ——pm»

Figure 13-7: Add/Remove Dialog

3. Select the path and name of the file you want to add to your project. From the
dropdown list, select the group you want to add the file to and click the Add
button. You will see the file added to the list of current filesin your project.

Tip
You can also add files to your project by dragging and dropping the files from any
file manager. If you already have the file open that you want to add to your project,

Adding, Moving, and Removing Files Building IDL Applications

Chapter 13: Creating IDL Projects 333

on Windows and UNIX platforms you can right click in the editor window and
select Add to Current Project from the shortcut menu. On Macintosh platforms,
you can add the open file by selecting Project — Add Window. On some Motif
platforms, dragging and dropping is not supported. In this case, use the
Add/Remove... didog.

4. Continue to add the files you want to include in your project. Then click OK.

You can expand the listings in the Project window to see the files you have
added.

6. Saveyour project file by selecting File — Save Project.
Moving Files

When you add afile to your project, it will be added to the appropriate group (based
onthe groups' filefilters). If you want the file to exist in a different group, you can
move it to that group. To move afile, complete the following steps:

1. Openyour project. Select File » Open Project (on Windows and Matif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see thefile you
want to move.

3. Tomovethefile, select thefile and then drag it to adifferent group or right
click over the file you want to move and select M ove To... from the shortcut
menu and then select the different group.

Note
On some Matif platforms, dragging and dropping is not supported. In this case, use
the M ove To... menu item on the shortcut menu.

4. Saveyour project file by selecting File — Save Project.

Note
When moving afile in your project, it does not change the actual path of thefile, it
only changes the group in which the file appears within your project.

Building IDL Applications Adding, Moving, and Removing Files

334 Chapter 13: Creating IDL Projects

Removing Files

When you no longer want afile to be in your project, you can remove it. When you
remove afile from your project, it does not delete the file on your disk, it only deletes
the reference to the file from your project.

On Windows and Motif
To remove files from your project, complete the following steps:

1. Openyour project. Select File — Open Project and select the path and name
of your project file.

2. Click Project -~ Add/RemoveFiles... The Add/Remove Filesdialogis
displayed.

3. Click on the file you want to remove from your project in the current files
listing. Click Remove.

Tip
On Windows and Motif, you can use the shortcut menu to remove afile. Right click
over the file and then select Remove. On Windows, you can also use the Delete key
to removefiles. Select the file by left-clicking over thefile and then pressthe Delete

key.

4. Saveyour project file by selecting File - Save Project.
On Macintosh
To remove files from your project, complete the following steps:

1. Open your project. Select File — Open and select the path and name of your
project file.

2. Select thefile you want to remove.
3. Sdlect Project — Remove Selected Item.
Tip
On Macintosh, you can use the Command+Delete key sequence to remove files.
Select the file by clicking over the file and then press Command+Del ete.

4. Saveyour project file by selecting File - Save Project.

Adding, Moving, and Removing Files Building IDL Applications

Chapter 13: Creating IDL Projects 335
Working with Files in a Project

Once you have added all of the filesin your application to a project, you can access
those files through the project window.

Editing a Source File

All sourcefilesthat can be openedin IDL, . pro and. pr c files (IDL GUIBUilder
files can be opened on Windows only), can be opened directly through the project
windows. To open afile for editing, complete the following steps:

1. Openyour project. Select File » Open Project (on Windows and Matif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and clicking (for Macintosh) over the file you want to
open. Select Edit from the shortcut menu. Sourcefiles (. pr o) are opened in
the IDL editor and GUIBuilder files (. pr c) are opened in the IDL GUIBuilder

Tip
You can also edit a. pro or . prc file by double-clicking on the filename. On
Windows you can aso drag the file from the Project window to the IDL Editor
window to open thefile.

Compiling a File

All source files can be compiled through the project window. To compile afile,
complete the following steps.

1. Openyour project. Select File » Open Project (on Windows and Matif) or
File -~ Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and right-clicking (for Macintosh) over the file you want
to compile. Select Compile from the shortcut menu. The fileis compiled.

For more information on how to compile all the filesin your project or just the files
that have been recently modified, see “ Compiling an Application from a Project” on
page 346.

Building IDL Applications Working with Files in a Project

336 Chapter 13: Creating IDL Projects

Note
On Macintosh, you will see ared check mark to the left of each file that has not
been compiled after it has been modified.

Testing a File

All IDL GUIBuilder files (. pr c) can be run under test mode directly through a
project. Torun a. pr c filein test mode, complete the following steps:

1. Openyour project. Select File - Open Project (on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Access the shortcut menu by right-clicking (for Windows and UNIX) or by
holding down CTRL and clicking (for Macintosh) over the file you want to
test. Select Test from the shortcut menu. Thefileisrun in test mode.

For more information on running . pr ¢ filesin test mode, see “ Running the
Application in Test Mode” on page 501.

Tip
You can also compile and run IDL GUIBUuilder files on any platform by building
your project. For more information, see “Building a Project” on page 347.

Setting the Properties of a File
Each filein a project has properties. To view the properties of afile, access the

shortcut menu by right-clicking (for Windows and UNIX) or Control+clicking (for
Macintosh) over the file you want to test. Select Properties from the shortcut menu.

Working with Files in a Project Building IDL Applications

Chapter 13: Creating IDL Projects

337

Alternatively, you can select the file and click the File Propertiestoolbar button. The

File Properties dialog appears as shown in the following figure.

File name (read only): File Properties

Name of the Group in which Name: Id_VEClFGCk-DFO
the file resides (read only).

T Groun: lSource
Path of the file (read only).\ roup:

When grayed out, indicates Path: Iexamples'\demo\demosrc'\

the file has been found. \
Check this box to compil ¥ | FileFound

e
the file when running or -
building. ————————— ¥ Compile File

Check this box to export the [B ™ Export
file when exporting a project.

Figure 13-8: File Properties Dialog

The following table describes each property in detail:

Property Description

File name The name of thefile. (Thisfield isread only.)

Group The name of the group in which thefileresides. (Thisfield is
read only.)

Path The path of thefile. (Thisfield isread only.)

File Found This box appears grayed out when afileisfound. If thefileis
not found, clicking on this checkbox displays adiaog so that
you can specify the path of thefile.

Table 13-2: File Properties

Building IDL Applications

Working with Files in a Project

338 Chapter 13: Creating IDL Projects

Property Description

CompileFile Indicates whether or not to compile the file when running or
building. For example, you may have included files for your
main program that you do not want compiled. Leaving this
check box blank indicates that you do not want thisfile
compiled.

Note - Non-source files such as data files and image files will
be automatically excluded from compilation.

Export Indicates whether or not to export the file when exporting a
project. Some files, such as data files that you need to use
when creating your application, are files that you do not want
to export. When checked, thisfile will be exported.

Table 13-2: File Properties

To set the properties for afile, complete the following steps:

Note
To set the properties of multiple files at asingle time, see “Modifying Properties of
Multiple Files’ on page 339.

1. Openyour project. Select File —» Open Project (on Windows and Motif) or
File - Open (on Macintosh). Select the path and name of your project file.

2. Click on the plus sign (on Windows and Motif) or the expand arrow (on
Macintosh) to expand the listing of the project files until you see the file you
want to change.

3. Access the shortcut menu by right-clicking (for Windows and UNIX) or
holding down CTRL and clicking (for Macintosh) over the file for which you
want to change the properties. Select Properties from the menu. The File
Propertiesdialog is displayed.

4. Select whether to compile the file. Check the Compile File checkbox to mark
the file for compiling when running or building an application.

Note
On Macintosh, the Compile File option can be selected in the Project Window. If
you want the file to be compiled, make sure that a black dot appearsto the far right

Working with Files in a Project Building IDL Applications

Chapter 13: Creating IDL Projects 339

of the file name. If the dot is not displayed, click to the far right of the file name,
under the exploding dot symbol, to mark the file for compiling.

5. Select whether to export the file. You may select to export files such as data
filesif they are a necessary component of your application. Other datafiles
which you have used for development but that aren’t necessary need not be
selected. Check the Export checkbox to export the file with your distribution.
For information on arranging files for successful exporting, see*Whereto
Store the Files for a Project” on page 324.

Note

On Macintosh, the Export option can aso be sel ected/desel ected by holding down
CTRL and right-clicking over the file and selecting Export from the menu. If there
isacheck mark next to Export, the file will be exported.

6. Click OK.
7. Saveyour project file by selecting File — Save Project.

Modifying Properties of Multiple Files

To set the properties of anumber of files at a single time, hold down CTRL and right-
click (Windows and Moitif) or hold down Command and click (Macintosh) to select
multiple files in the Project window. Click the File Propertiestoolbar button. In the
dialog which appears, you can select the Compile File or Export properties of
“Multiple Files”

File Properties E
Marme: IMuItipIe Files
Group: IMuItipIe Files
Path: IMuItipIe Files
I~ | File Fourd
I Compile File
I Expor

Figure 13-9: Multiple File Properties Dialog

Building IDL Applications Working with Files in a Project

340 Chapter 13: Creating IDL Projects
In addition to setting file properties, you can also set the properties of your project.
Through the Project Options dialog, you can control run and compile commands as
well as selecting the type of project to create. See “ Setting the Options for a Project”

on page 341 for instructions.

Working with Files in a Project Building IDL Applications

Chapter 13: Creating IDL Projects 341
Setting the Options for a Project

The options for a project describe how to run, compile, and build the project. To set
the options for your project, complete the following steps:

1. Openyour project. Select File » Open Project. Select the path and name of
your project file.

2. Click Project - Options... The Project Optionsdiaog is displayed.

Project Options E
h amne:
[myprci.pi
Patt:

IE:\HSI\IDL54\

Froject Type

™ Source File [.pra)

Fun Commnand:
Imyploi

Build Cormand:

Save File:

Imyproi. av

]9 I Cancel |

Figure 13-10: Project Options Dialog

3. Set the options based upon the information in the following table:

Option Description
Name Specifies the project name. (Thisfield isread only.)
Path Specifies the path of the project. (Thisfield isread only.)

Table 13-3: Project Options

Building IDL Applications Setting the Options for a Project

342 Chapter 13: Creating IDL Projects
Option Description
Project Type Specifies how the project will run or build. The available

formats are;

» SourceFile(. pr o).

» SaveFile(. sav).

» Licensed Save File (. sav)

Note - The Licensed Save File option is grayed out if you do
not have an Unlimited Right to Distribute license. For more
information on how to distribute IDL Runtime with your
application, contact your Research Systems sales
representative.

For more information on building and running projects, see
“Building aProject” on page 347 or “Running an Application
from a Project” on page 349.

Run Command

Specifies the IDL command to run your application. The
default is the name of the project. This can be any valid IDL
command including . sav or . pr o files (these can be files
that are included or not included in your project.) Typically
thisisthe main program in your application.

Tip - You can use the %7? command stream substitution to call
adialog to enter avalue or values to passto the called
program. For example, if you have a program named “main”
and it requires the argument “x” to be passed to it, then you
can enter the following for the Run Command:

mai n, %(Enter the value for x, Xx)

For more information on how to run your application, see
“Running an Application from a Project” on page 349.

Setting the Options for a Project

Table 13-3: Project Options

Building IDL Applications

Chapter 13: Creating IDL Projects 343

Option Description

Build Command | Specifiesthe IDL command to build the application. If left
blank, the filesin the project are built according to the Project
Type specified and are compiled (if applicable) in the order
specified under Build Order. For more information, see
“Selecting the Build Order” on page 344.

You can enter any valid IDL command including . sav or

. pr o files. You can also enter abatch file using @filenamein
order to perform other operations (for example, running a Perl
script on your source or data files before compiling). For more
information on batch scripts, see the Using IDL manual.

Save File Specifies the name of the .. sav fileto create when building
your project. For more information on building a project, see
“Building a Project” on page 347.

Note - Thisfield is grayed out if you have selected the Source
File (. pro) Project Type.

Table 13-3: Project Options

4. After completing any changes, click OK.
5. Saveyour project file by selecting File — Save Project.
Note

In addition to setting options for a project, you can also set anindividual file's
properties. For more information, see “ Setting the Properties of aFile” on page 336.

Building IDL Applications Setting the Options for a Project

344 Chapter 13: Creating IDL Projects
Selecting the Build Order

The build order of aproject determines the order in which the files will be compiled.
In some cases, you might not be able to run all the filesin your project because of
dependencies on the order in which they are compiled. For example, if the file

mai n. pro contains:

Pro main
x=1
y=AddTen(x)
Print, x
End

and file AddTen. pr o contains:

Functi on AddTen, x
X=x+10
End

IDL can'ttell if the statement y=AddTen(x) isreferring to avariable named AddTen
or afunction named AddTen. Unless AddTen iscompiled before mai n, you will get a
“Variable undefined” error message.

To select the build order for the filesin your project, complete the following steps:

1. Open your project. Select File — Open Project. Select the path and name of
your project file.

2. Click the Build Order tab in the Project window.

3. Movethefilesto the order in which you want to compile them. The topmost
filelisted in the Build Order window will be compiled first. On Windows and
Macintosh, you can move afile by dragging and dropping it to the desired
location. On UNIX, first select afile by left-clicking it, then change the order
by using the up and down arrows located in the bottom left corner of the

Selecting the Build Order Building IDL Applications

Chapter 13: Creating IDL Projects 345

Project window. For example, using the scenario stated previously, the Build
Order would look like the following:

B3 | myproject. pri
----- AddTen.pro
b main. pro

Groups Build Order I

Figure 13-11: Build Order Window

4. Saveyour project file by selecting File — Save Project.

Note
If the Compile File option is deselected, the file will not show in the Build Order
window. For more information on file properties, see “ Setting the Properties of a
File” on page 336.

Building IDL Applications Selecting the Build Order

346 Chapter 13: Creating IDL Projects
Compiling an Application from a Project

You can compile all of the sourcefilesin your project, or just the files that you have
recently modified. A modified file is one that has been modified and then saved (on
Macintosh, the file does not have to be saved). If you have included GUIBUuilder files
in your project, see the following section, “About IDL GUIBuilder Files’.

Note

If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 344.

To Compile All Files in Your Project

1. Openyour project. Select File -~ Open Project. Select the path and name of
your project file.

2. Tocompileall thefilesin your project on Windows and Motif, select
Project — Compile - All Files. On Macintosh, while holding down the
Option key, select Project — Compile All Files.

To Compile Only Modified Files in Your Project

1. Open your project. Select File -~ Open Project. Select the path and name of
your project file.

2. To compilejust the files that have been modified since the last compilation on
Windows and Matif, select Project - Compile — Modified Files.

Note

If you have dependencies on the order in which your files are compiled, see
“Selecting the Build Order” on page 344.

Compiling an Application from a Project Building IDL Applications

Chapter 13: Creating IDL Projects 347
Building a Project

Building a project createsa. sav file of your project or compiles your project based
upon the options you have set for your project. If you have specified:

» SourceFile— TheIDL sessionisreset (all procedures, functions, main level
variables, and common blocks are deleted from memory), al filesin the
project are compiled, and all undefined but referenced functions and
procedures are resolved.

For more information on resetting an IDL session, see
FULL_RESET_SESSION in the IDL Reference Guide. For more information
on resolving undefined but referenced functions, see RESOLVE_ALL inthe
IDL Reference Guide.

 SaveFile— ThelDL sessionisreset (al procedures, functions, main level
variables, and common blocks are deleted from memory so that unwanted
items are not included in your . sav file), al filesin the project are compiled,
all undefined but referenced functions and procedures are resolved, and all the
functions and procedures are saved into the file you specified in the project’s
options.

The savefileis created using the XDR and COMPRESS options. For more
information, see SAVE in the IDL Reference Guide.

e Licensed Save File— The IDL sessionisreset (all procedures, functions,
main level variables, and common blocks are deleted from memory so that
unwanted items are not included in your . sav file), dl filesin the project are
compiled, al undefined but referenced functions and procedures are resolved,
al the functions and procedures are saved into the file specified in the project’s
options, and embedded license information is added to the savefile.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your Research Systems sales
representative.

Note

For more information on project options, see “ Setting the Options for a Project” on
page 341.

To build your project, complete the following steps:

Building IDL Applications Building a Project

348 Chapter 13: Creating IDL Projects

1. Openyour project. Select File — Open Project. Select the path and name of
your project file.

2. Select Project — Build. A dialog appears, confirming that you want to reset
your session.

Thiswill delete all procedures, functions, main level variables and common
blocks from memory. If you have the savefile option selected for your project,
thiswill ensure that these items will not be included in your . sav file. If you
have the source file option selected for your project, thiswill ensure that you
have a clean environment in which to run and test your application.

3. Click OK.

Your project has been built.
About IDL GUIBuilder Files

When you build your IDL Project, the IDL GUIBuUIilder (. prc) filesare
automatically compiled and the resulting source (. pr o) and event
(* _event cb. pr o) filesare automatically added to your project.

For more information on the IDL GUIBuilder, see Chapter 21, “Using the
IDL GUIBuilder”.

Building a Project Building IDL Applications

Chapter 13: Creating IDL Projects 349
Running an Application from a Project

After compiling your project, you can run your application. What happens when you
run your project depends upon the project options you have selected:

» If you have selected your execution file format as source file, each file in your
project is compiled and then run using the command you specified as the run
command.

» If you have selected your execution file format asa. sav file, the most
recently compiled version is run using the command you specified as the run
command.

Note
You must have compiled or built your application before running it.

For moreinformation on setting options for your project, see “ Setting the Options for
aProject” on page 341.

To run your application, complete the following steps.

1. Openyour project. Select File — Open Project. Select the path and name of
your project file.

2. Select Project - Run.

Building IDL Applications Running an Application from a Project

350

Chapter 13: Creating IDL Projects

Exporting a Project

Once you have completed your application, you can quickly and easily create an IDL
Runtime distribution or you can easily move your application to another platform or

distribute your source code to colleagues by exporting your project. All your source

code or compiled code (. sav files), IDL GUIBUilder files, datafiles, and imagefiles
are copied to adirectory you specify.

What is exported is dependent upon the options you have selected for the project
from the Project — Optionsdialog. If you have selected:

Source File— Your project’s source, IDL GuiBuilder, data, bitmaps, and any
other files listed in your project will be exported along with your IDL Project
fileto adirectory you specify so that you can move them to another platform.
For information on how to set up adirectory structure so that your IDL Project
can find the source files after exporting, see “Where to Store the Filesfor a
Project” on page 324.

Save File— The. sav filefor your project as well as data, bitmaps, and any
other . sav filesincluded in your project will be exported. You will also be
given the option of exporting an IDL Runtime distribution for the platform to
which you are exporting. Contact your sales person for optionsif you want to
include an IDL Runtime distribution with your application. For information on
how to set up adirectory structure so that all fileswill retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 324.

Licensed Save File— The. sav file (with an embedded license) for your
project as well as data, images, and any other . sav filesincluded in your
project will be exported. You will also be given the option of exporting an IDL
Runtime distribution for the platform you are exporting on. For information on
how to set up adirectory structure so that all fileswill retain their relative paths
after exporting, see “Where to Store the Files for a Project” on page 324.

For more information on how to create a licensed save file and distribute IDL
Runtime with your application, contact your Research Systems sales
representative.

For more information on the options for a project, see “ Setting the Options for a
Project” on page 341.

Exporting Your Project’s Source Files

To export your project’s source files, complete the following steps:

Exporting a Project

Building IDL Applications

Chapter 13: Creating IDL Projects 351

1. Openyour project. Select File —» Open Project. Select the path and name of
your project file.

2. Select Project - Export. The Browse for Folder dialog displays.
3. Select the folder to which you want to export the project and click OK.

Your project has now been exported. When moving a project and its source files from
one platform to another, there are afew itemsto be aware of:

* Project workspace information such as which files are open, etc. will not move
from platform to platform.

» Problemswith paths can occur if they are not relative paths. If you open a
project and find that it cannot find the source file, you can fix this by changing
the properties of the file. For more information, see “Where to Store the Files
for aProject” on page 324 and “ Setting the Properties of aFile” on page 336.

Exporting Your Project to a Save File

To export your project to a save file, complete the following steps:

1. Openyour project. Select File » Open Project. Select the path and name of
your project file.

2. Select Project - Export. The Browse for Folder dialog displays.
3. Select the folder to which you want to export the project and click OK.

4. A diaogisdisplayed asking if you want to export an IDL Runtime distribution
with your . sav file. Select No to not include the distribution.

Your project has now been exported.

Note
If you are interested in including a Runtime version of IDL with you application,
contact your Research System sales representatives for more information.

Building IDL Applications Exporting a Project

352 Chapter 13: Creating IDL Projects

Exporting a Project Building IDL Applications

Chapter 14:

Writing Efficient IDL

Programs

The following topics are covered in this chapter:

OVEINVIEW ..t o e e 354
Expression Evaluation Order 355
Avoid IF Statements 356

Use Vector and Array Operations 357
Use System Functions and Procedures . . . 359

Building IDL Applications

Use Constants of the Correct Type 360
Eliminate Invariant Expressions 361
Virtual Memory 362
IDL Implementation 368
TheIDL CodeProfiler 369

353

354 Chapter 14: Writing Efficient IDL Programs
Overview

This chapter presentsideas to consider when trying to create the most efficient
programs possible, and discusses how to analyze the performance of your
applications.

Knowledge of IDL’s implementation and the pitfalls of virtual memory can be used
to greatly improvethe efficiency of IDL programs. In DL, complicated computations
can be specified at ahigh level. Therefore, inefficient IDL programs can suffer severe
speed penalties — perhaps much more so than with most other languages.

Techniques for writing efficient programsin IDL are identical to those in other
computer languages with the addition of the following simple guidelines:

» Usearray operations rather than loops wherever possible. Try to avoid loops
with high repetition counts.

e UselDL system functions and procedures wherever possible.
* Access array datain machine address order.

Attention also must be given to algorithm complexity and efficiency, asthisis usually
the greatest determinant of resources used.

Overview Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 355
Expression Evaluation Order

The order in which an expression is evaluated can have a significant effect on
program speed. Consider the following statement, where A is an array:

:Scale AfromO to 16.
B=A* 16. / MX(A)

This statement first multiplies every element in A by 16 and then divides each
element by the value of the maximum element. The number of operationsrequired is
twice the number of elementsin A. A much faster way of computing the same result
is used in the following statement:

;Scale AfromO to 16 using only one array operation.
B=A%* (16./NMAX(A))

or

; Operators of equal priority are evaluated fromleft toright. Only
;one array operation is required.
B = 16./ MAX(A) * A

The faster method only performs one operation for each element in A, plus one scalar
division. To see the speed difference on your own machine, execute the following
statements:

A = RANDOMJ seed, 512, 512)
t1 = SYSTIME(1) & B = A*16./MAX(A) & t2 = SYSTI ME(1)

PRINT, 'Tinme for inefficient calculation: ', t2-t1l
t3 = SYSTIME(1) & B = 16./MAX(A)*A & t4 = SYSTI ME(1)
PRINT, 'Tine for efficient calculation: ', t4-t3

Building IDL Applications Expression Evaluation Order

356 Chapter 14: Writing Efficient IDL Programs
Avoid IF Statements

Programs with array expressions run faster than programs with scalars, loops, and I F
statements. Some examples of slow and fast ways to achieve the same results follow.

Example—Summing Elements

Thefirst example adds al positive elements of array B to array A.

;Using a loop will be slow
FORI =0, (N1) DOIF B[I] GT 0 THEN A[I] = A[I] + B[]

; Fast way: Mask out negative el ements using array operations.
A=A+ (BGTO0 *B

; Faster way: Add B > 0.
A=A+ (B>0)

When an IF statement appears in the middle of aloop with each element of an array
in the conditional, the loop can often be eliminated by using logical array
expressions.

Example—Using Array Operators and the WHERE Function

In the example below, each element of C is set to the square-root of A if A[l] is
positive; otherwise, C[I] is set to minus the square-root of the absolute value of A[l].

;Using an I F statenent is slow
FOR 1=0,(N-1) DOIF A[l] LE O THEN $
qI1]=-SQRT(-AlI]) ELSE 1]=SQRT(A[])

;Using an array expression is nuch faster.
C=((AGIO0) * 2-1) * SORT(ABS(A))

The expression (A GT 0) hasthevalue 1 if A[l] is positive and has the value O if
Afl]lisnot. (A GT 0)* 2- lisequa to +1if A[l] ispositiveor -1 if A[l] is negative,
accomplishing the desired result without resorting to loops or IF statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

; Get subscripts of negative el ements.

negs = WHERE(A LT 0)

; Take root of absol ute val ue.

C = SQRT(ABS(A))

; Negate elenents in C corresponding to negative elenents in A
d negs] = -(negs]

Avoid IF Statements Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 357
Use Vector and Array Operations

Whenever possible, vector and array data should always be processed with IDL array
operations instead of scalar operationsin aloop. For example, consider the problem
of inverting a512 x 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

Thefollowing exampleisfor demonstration only. The IDL system variable | ORDER
should be used to control the origin of image devices. The ORDER keyword to the
TV procedure serves the same purpose.

A programmer without experience in using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR 1 =0, 511 DO FOR J = 0, 255 DO BEG N

; Tenporarily save pixel inage.
tenp = image[l, J]

; Exchange pi xel in sane colum from correspondi ng row at bottom
image[l, J] = image[l, 511 - J]
image[l, 511-J] = tenp

ENDFOR

A more efficient approach to this problem capitalizes on I DL’ s ability to process arraysas
asingle entity:

FOR J = 0, 255 DO BEG N

; Tenporarily save current row.
tenp = image[*, J]

; Exchange row wi th correspondi ng row at bottom
image[*, J] = imge[*, 511-7]

imge[*, 511-J] = tenp

ENDFOR

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

;Get a second array to hold inverted copy.
i mge2 = BYTARR(512, 512)

Building IDL Applications Use Vector and Array Operations

358

Chapter 14: Writing Efficient IDL Programs

; Copy the rows fromthe bottom up.
FOR J = 0, 511 DO inmage2[*, J] = image[*, 511-7]

Even more efficient isthe single line:

image2 = image[*, 511 - | NDGEN(512)]
that reverses the array using subscript ranges and array-val ued subscripts.
Finally, using the built-in ROTATE function is quickest of all:

i mmge = ROTATE(i nage, 7)

Inverting the image is equivalent to transposing it and rotating it 270 degrees
clockwise.

Use Vector and Array Operations Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 359
Use System Functions and Procedures

IDL supplies anumber of built-in functions and procedures to perform common
operations. These system-supplied functions have been carefully optimized and are
amost aways much faster than writing the equivalent operation in IDL with loops
and subscripting.

Example

A common operation isto find the sum of the elementsin an array or subarray. The
TOTAL function directly and efficiently evaluates this sum at least 10 times faster
than directly coding the sum.

; Slow way: Initialize SUM and sum each el enent.
sum= 0. & FOR 1 =J, K DO sum= sum+ array[l]

; Efficient, sinple way.
sum = TOTAL(array[J: K])

Similar savings result when finding the minimum and maximum elementsin an array
(MIN and MAX functions), sorting (SORT function), finding zero or nonzero
elements (WHERE function), etc.

Building IDL Applications Use System Functions and Procedures

360 Chapter 14: Writing Efficient IDL Programs
Use Constants of the Correct Type

Asexplained in Chapter 3, “Constants and Variables’, the syntax of a constant
determinesitstype. Efficiency is adversely affected when the type of a constant must
be converted during expression evaluation. Consider the following expression:

A+ 5

If thevariable A is of floating-point type, the constant 5 must be converted from short
integer type to floating point each time the expression is evaluated.

Thetype of aconstant also has an important effect in array expressions. Care must be
taken to write constants of the correct type. In particular, when performing arithmetic
on byte arrays with the intent of obtaining byte results, be sure to use byte constants;
e.g., nB. For example, if A isabyte array, the result of the expression A + 5B isa
byte array, while A + 5 yields a 16-bit integer array.

Use Constants of the Correct Type Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 361
Eliminate Invariant Expressions

Expressions whose values do not change inside aloop should be moved outside the
loop. For example, in the loop:

FORI =0, N- 1 DOarr[l, 2*J-1] = ...,
the expression (2* J- 1) isinvariant and should be evaluated only once before the
loop is entered:

temp = 2*J-1

FORI1 =0, N1 DOarr[l, tenmp] =

Building IDL Applications Eliminate Invariant Expressions

362 Chapter 14: Writing Efficient IDL Programs
Virtual Memory

The IDL programmer and user must be cognizant of the characteristics of virtual
memory computer systemsto avoid penalty. Virtual memory allows the computer to
execute programs that require more memory than is actually present in the machine
by keeping those portions of programs and data that are not being used on the disk.
Although this process is transparent to the user, it greatly affects the efficiency of the
program.

IDL arrays are stored in dynamically allocated memory. Although the program can
address large amounts of data, only a small portion of that data actually residesin
physical memory at any given moment; the remainder is stored on disk. The portion
of data and program code in real physical memory is commonly called the working
Set.

When an attempt is made to access a datum in virtual memory not currently residing
in physical memory, the operating system suspends IDL, arranges for the page of
memory containing the datum to be moved into physical memory and then allows
IDL to continue. This process involves deciding where the datum should go in
memory, writing the current contents of the selected memory page out to the disk,
and reading the page with the datum into the selected memory page. A page fault is
said to occur each time this process takes place. Because the time required to read
from or write to the disk is very largein relation to the physical memory accesstime,
page faults become an important consideration.

When using IDL with large arrays, it isimportant to have access to sufficient physical
and virtual memory. Given asuitable amount of physical memory, the parameters that
regulate virtual memory require adjustment to assure best performance. These
parameters are discussed below. See “Virtual Memory System Parameters’ on

page 365. If you suspect that lack of physical or virtual memory is causing problems,
consult your system manage.

Access Large Arrays by Memory Order

When an array islarger than or close to the working set size (i.e., the amount of
physical memory available for the process), it is preferable to access it in memory
address order.

Consider the process of transposing alarge array. Assume the array isa512 x 512
byte image with a 100 kilobyte working set. The array requires 512 x 512, or
approximately 250 kilobytes. Less than half of the image can be in memory at any
one instant.

Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 363

In the transpose operation, each row must be interchanged with the corresponding
column. Thefirst row, containing the first 512 bytes of the image, will be read into
memory, if necessary, and written to the first column. Because arrays are stored in
row order (the first subscript varies the fastest), one column of the image spans a
range of addresses almost equal to the size of the entire image. To write the first
column, 250,000 bytes of data must be read into physical memory, updated, and
written back to the disk. This process must be repeated for each column, requiring the
entire array be read and written almost 512 times. The amount of time required to
transpose the array using the method described above isrelatively large.

In contrast, the IDL TRANSPOSE function transposes large arrays by dividing them
into subarrays smaller than the working set size enabling it to transpose a 512 x 512
image in a much smaller amount of time.

Example
Consider the operation of the following IDL statement:
FOR X = 0, 511 DOFOR Y = 0, 511 DOARR[X, Y] = ...

This statement requires an extremely large execution time because the entire array
must be transferred between memory and the disk 512 times. The proper form of the
statement is to process the points in address order by using the following statement:

FORY =0, 511 DOFOR X = 0, 511 DO ARR[X, Y] = ...

This approach cuts computing time by afactor of at least 50.
Running Out of Virtual Memory

If you process large images with IDL and use the vendor-supplied default system
parameters (especialy if you have a small system), you may encounter the error

message
% Unabl e to allocate nenory.

This error message means that |DL was unable to obtain enough virtual memory to
hold al your data. Whenever you define an array, image, or vector, IDL asksthe
operating system for some virtual memory in which to store the data. When you
reassign the variable, IDL frees the memory for re-use.

Thefirst time you get this error, you will either have to stop what you are doing and
exit IDL or delete unused variables containing images or arrays, thereby releasing
enough virtual memory to continue. You can delete the memory allocation of array
variables by setting the variable equal to a scalar value.

Building IDL Applications Virtual Memory

364 Chapter 14: Writing Efficient IDL Programs

If you need to exit IDL, you first should use the SAVE procedure to save your
variablesin an IDL savefile. Later, you will be able to recover those variables from
the save file using the RESTORE procedure.

The HELP/MEMORY command tells you how much virtual memory you have
allocated. For example, a512 x 512 complex floating array requires 85122 bytes or
about 2 megabytes of virtual memory because each complex element requires 8
bytes. Deleting a variable containing a512 x 512 complex array will increase the
amount of virtual memory available by this amount.

Minimizing Virtual Memory

If virtual memory is aproblem, try to tailor your programming to minimize the
number of images held in IDL variables. Keep in mind that IDL creates temporary
arrays to evaluate expressions involving arrays. For example, when evaluating the
statement

A=(B+0Q * (E+F

IDL first evaluatesthe expression B + C and creates atemporary array if either B or C
are arrays. In the same manner, another temporary array is created if either E or F are
arrays. Finally, theresult is computed, the previous contents of A are deleted, and the
temporary area holding the result is saved as variable A. Therefore, during the
evaluation of this statement, enough virtual memory to hold two arrays' worth of data
isrequired in addition to normal variable storage.

It isagood ideato delete the allocation of a variable that contains an image and that
appears on the left side of an assignment statement, as shown in the following
program.

; Loop to process an image.
FORI = ... DO BEGN

; Processi ng steps.

:Delete old allocation for A
A=0

; Conput e i nage expression and store.

A = | mage_Expression
; End of 1 oop.
ENDFOR

Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 365

The purpose of the statement A=0 is to free the old memory alocation for the
variable A before computing the image expression in the next statement. Because the
old value of A isgoing to bereplaced in the next statement, it makes senseto free A's
allocation first.

The TEMPORARY Function

Another way to minimize memory use when performing operations on large arraysis
to use the TEMPORARY function. TEMPORARY returns the value of its argument
as atemporary variable and makes the argument undefined. In this way, you avoid
making anew copy of temporary results. For example, assumethat A isalarge array.
To add 1 to each lement in A, you could enter:

A= A+l

However, this statement creates anew array for the result of the addition and assigns
theresult to A before freeing the old allocation of A. Hence, the total storage required
for the operation istwice the size of A. The statement:

A = TEMPORARY(A) + 1

requires no additional space.
Virtual Memory System Parameters

Thefirst step isto determine how much virtual memory you require. For example, if
you compute complex Fast Fourier Transforms (FFT) on 512 x 512 images, each
complex image requires 2 megabytes. Suppose that during atypical session you need
to have four images stored in variables and require enough memory for two imagesto
hold temporary results, resulting in atotal of six images or 12 megabytes. Rounding
up to 16 megabytes gives a reasonable goal. The following SY SGEN parameters and
guotas should be changed to increase the amount of virtual memory available.

Note
For UNIX, The size of the swapping area(s) determines how much virtual memory
your processis allowed. To increase the amount of available virtual memory, you
must increase the size of the swap device (sometimes called the swap partition).
Increasing the size of a swap partition is atime-consuming task that should be
planned carefully. It usually requires saving the contents of the disk, reformatting
the disk with the new file partition sizes, and restoring the original contents.Some
systems offer the alternative of swapping to aregular file. Thisis a considerably
easier solution, although it may not be as efficient. Consult your system
documentation for details and instructions on how to perform these operations.

Building IDL Applications Virtual Memory

366 Chapter 14: Writing Efficient IDL Programs

Note
For OpenVMS, asit comesfrom DEC, is not tuned for image processing. To get the
best performance from IDL, you should increase the VMS SY SGEN parameters,
file sizes, and AUTHORIZE quotas that restrict the virtual memory system. This
discussion is on the most elementary level, and the appropriate VM S manuals
should be consulted for more detail.

SYSGEN Parameters

WSMAX: This parameter sets the maximum number of pages of any working set on
asystem-wide basis. The working set is that portion of virtual memory used by a
process that is actualy in physical memory. Although thisis an over simplification,
small working set sizes cause page faulting. Page faults waste time and potentially
require disk accesses. Increasing the working set to a size of three times the size of
the largest array to be processed, or at least 2,000 blocks, can cause dramatic speed
improvements.

VIRTUALPAGECNT: This parameter sets the maximum number of virtual pages
(512 bytes/page) that can be used by any one process.

To change the values of SY SGEN parameters, DEC recommends that you run the
AUTOGEN command procedure after adding linesto set the new values of changed
parameters to the end of the file SYSSSYSTEM: MODPARAMS.DAT.

System Files

The sizes of the system page and swap files (SYS$SYSTEM: PAGEFILE.SYSand
SWAPFILE.SYS) must be large enough to contain the virtual memory used by all
active processes. In any event, you cannot have more virtual memory than will fitin
the page file. You can increase the size of these files or create secondary system files
on adisk other than the system disk. If you get the error message

Page file fragnented - continuing

on the system console, your page file istoo small. To increase the size of thesefiles,
use the command procedure SYSSUPDATE: SWAPFILES. Use the SYSGEN
INSTALL command to activate system files created on disks other than the system
disk. AUTOGEN can also be used to change the sizes of thesefiles.

Quotas

Thefollowing quotas, all of which can be changed on aper user or system basisusing
the AUTHORIZE utility, affect virtual page limits and working set sizes.

Virtual Memory Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 367

Pgflquo: The page file quota for each user expressed in blocks. If you increase the
size of the page file, be sure to increase the page file quotas for the users requiring
more virtual memory. Be sure that the page file size is at least as large as the sum of
the quotas of each active user.

W Squo: The working set quota for each user. This quota can be used to alow some
users alarger working set than others. WSquo must not be larger than WSMAX.

Note
For Windows and Macintosh, consult your system documentation for details on
how to configure your system to use virtual memory.

Building IDL Applications Virtual Memory

368 Chapter 14: Writing Efficient IDL Programs
IDL Implementation

IDL programs are compiled into alow-level abstract machine code whichis
interpretively executed. The dynamic nature of variablesin IDL and the relative
complexity of the operators precludes the use of directly executable code. Statements
are only compiled once, regardless of the frequency of their execution.

The IDL interpreter emulates a ssimple stack machine with approximately 50
operation codes. When performing an operation, the interpreter must determine the
type and structure of each operand and branch to the appropriate routine. The time
required to properly dispatch each operation may be longer than the time required for
the operation itself.

The characteristics of thetimerequired for array operationsis similar to that of vector
computers and array processors. Thereisaninitia set-up time, followed by rapid
evaluation of the operation for each element. Thetime required per element is shorter
in longer arrays because the cost of thisinitial set-up period is spread over more
elements. The speed of IDL is comparable to that of optimized FORTRAN for array
operations. When data are treated as scalars, |DL efficiency degrades by a factor of
30 or more.

IDL Implementation Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 369
The IDL Code Profiler

The IDL Code Profiler helps you analyze the performance of your applications. You
can easily monitor the calling frequency and execution time for procedures and
functions. The Praofiler can be used with programs entered from the command line as
well as programs run from within afile.

You can start the IDL Code Profiler by selecting “Profile” from the Run menu of the
IDLDE or by entering PROFI LER at the Command Input Line. For more information
about the PROFILER procedure, see PROFILER in the IDL Reference Guide.

Note
Calling the Profiler from the Command Input Line does not start the Profiler dialog.

The Profile Dialog

Select “Profile” from the Run menu. The Profile dialog appears.

| User Modules Y | System Modules ;
|BDIST |8 ABS
®FILEPATH |mACos
OFROF_TEST |8 ALOG

|BALOGLO

|® ARG_PRESENT

B ASIN

/ |mAssoc /
[T All User Modules [T All System Modules
1

Frofile All Clear ALl Reset | Report... Cancel Help

Figure 14-1: Profile Dialog

User Modules

User modules include user-written procedures as well as library procedures and
functions provided with IDL. By default, none of the User Modules are selected for
profiling. To select amodule, click on the checkbox next to it. All user modules must
be compiled before opening the Profile dialog in order to be available for profiling.

Building IDL Applications The IDL Code Profiler

370 Chapter 14: Writing Efficient IDL Programs

All User Modules

Select this checkbox to select all the user modules for profiling.
System Modules

Thisfield includes all IDL system procedures and functions.

All System Modules

Select this checkbox to select all the system modules for profiling.
Buttons

Click “Profile All” to enable profiling for all the available modules—System and
User. Click “Clear All” to disable profiling for al the available modules—System
and User. Click “Reset” to clear the report shown in the “ Profile Report” dialog. The
“Profile Report” dialog is dismissed, asit no longer contains any information. Click
“Report” to generate a profile of the selected modules. The Profile Report dialog
appears. Click “Cancel” to dismissthe Profile dialog. Click “Help” to display Help
on thisdialog.

The Profile Report Dialog

Click “Report” from the Profile dialog in the Run menu of the IDLDE. The Profile
Report dialog appears.

Fields in the Profiler Report Dialog

Thefieldsin the Profiler Report dialog show the following attributes of the modules
selected for profiling from the Profile dialog. You can sort the values in each column
in both ascending and descending order by clicking anywhere within the column. By
default, the Modules column is sorted alphabetically.

Note
Whether you enter a program at the command line, or run a program contained in a
file, the PROFILER procedure will report the status of all the specified modules
compiled and executed either since profiling was first set or since the PROFILER
was reset.

Modules

The name of the library, user, or system procedure or function.

The IDL Code Profiler Building IDL Applications

Chapter 14: Writing Efficient IDL Programs 371

Typ

The type of module. System procedures or functions are associated withan “S’. User
or library functions or procedures are associated with a“U”.

Count
The number of times the procedure or function has been called.
Only(sec)

Thetimerequired, in seconds, for IDL to execute the given function or procedure, not
including any callsto other functions or procedures (children).

Only Avg
Average of the Only(sec) field above.
+Children(sec)

Thetime required, in seconds, for IDL to execute the given function or procedure
including any callsto other functions or procedures.

+Child Avg
Average of the +Children(sec) field above.
Buttons

Click “Print” to print the report. The Print dialog appears. You can also select “Print”
from the File menu of the IDLDE. Click “Save” to save the report asatext file. The
Save Profile Report dialog appears. Click “Cancel” to dismiss the Profile Report
dialog. The contents remain available after cancelling. Click “Help” to display Help
on this dialog.

Using the IDL Code Profiler

Open anew editor file by selecting “New” from the File menu.
Enter the following lines in the editor:

pro prof _test

openr, 1, filepath(’nyny.dat’, subdir=['exanples’, ’'data’'])
a=assoc(1, bytarr(768,512))

b=a[0]

close, 1

TV, b

end

Building IDL Applications The IDL Code Profiler

372

Chapter 14: Writing Efficient IDL Programs

Save thefile as prof test.pro by selecting “Save”’ from the File menu. The Save As
dialog appears.

To usethe IDL Code Profiler, you must first compile the routines you would like to
profile. For more involved programs, you can use RESOLVE_ALL to compileall
uncompiled functions or procedures that are called in any already-compiled
procedure or function.

Select “Profile...” from the Run menu. The Profile dialog appears; it will remain
visible until dismissed. Select “Profile All” to profile all the available modules.

Run the application by selecting “Run” from the File menu. After the application is
finished, return to the Profile dialog and click “Report”. The Profile Report dialog
appears, as shown in the following figure.

Modules [y Count | Onlyfsec)| Only Ave |+Children(sec)| +Child Avg | &
ASS0C g 1/ 0.000149 0.000143 0.000149 0.000149
BYTARR g 1 0.010416 0.010416 0.010418 0.010418
CLOSE g 1/ 0.000292 0.000292 0.000292 0.000292
FILEPATH 8] 1) 0.001480, 0.001430 0.001952 0.001952
KEYWORD_SET | 5 4/ 0.000191 0.000043 0.000191 0.000048
N_ELEMENTS | 3 3l 0.00018Z2 0.000061 0.000132 0.000061
ON_ERROR g 1/ 0.000099 0,000099 0.000099 0.000099
OFPENR g 1 0.000761 0.000761 0.000761 0.000761
FEOF_TEST 8] 1l 0.025635 0.025635 2.581771 2.581771
T4 g 1| 2.542566, 2.542566 2.542566 2.542566

1
Frint | Sawve Cancel Help

Figure 14-2: Profile Report Dialog

For more information about the capahilities of either dialog, see “ The Profile Dialog”
on page 369 and “The Profile Report Dialog” on page 370.

Profiling with Command Line Modules

We will demonstrate how the Profiler handles newly compiled modules. The above
example set profiling for all system files, plus the user module, pr of _t est, and the
library function, FILEPATH. If you have altered the above results, reset the report
and run pr of _t est again.

The IDL Code Profiler Building IDL Applications

Chapter 14: Writing Efficient IDL Programs

Enter the following lines at the Command Input Line:

;Create a dataset using the library function DI ST. Note that

;is imrediately conpil ed.

A= DI ST(500)

; Display the inmage.
TV, A

373

DI ST

Return to the Profile dialog. You will note that the DIST function has been appended
to the User Modulefield, but that it remains deselected. The Profiler will not include
any uncompiled modules by default. Click “Report” in the Profile dialog to refresh
the Profile Report dialog's results. The following figure shows the new results. Note
that TV is counted twice, and that more system modules have been appended to the
Modules column. The DIST function, although it is not itself included, calls system
routines which were previously selected for profiling.

Modules [yf Count | Only(sec)| Only Awg [+Children{sec)| +Child Ave |[&
ASS0C g 1/ 0.000001 0.000001 0.000001 0.000001
BYTARR g 1| 0.009974) 0.009974 0.009974 0.009974
CLOSE g 1| 0.000334) 0.000334 0.000334 0.000334
FILEPATH 8] 1/ 0.000009 0,000009 0.000017 0.000017
FIMDGEN g 1/ 0.000292 0.000292 0.000292 0.000292
FLTARR g 1/ 0.000198 0.000193 0.000198 0.000198
KEYWORD_SET | 5 4/ 0.000004) 0,000001 0.000004 0.000001
N_ELEMENTS | 3 4/ 0.000054| 0.000013 0.000054 0.000013
ON_ERROR g 2l 0.000115 0.000057 0.000115 0.000057
OFPENR g 1/ 0.000001 0.000001 0.000001 0.000001
FEOF_TEST 8] 1| 0.036946 0.036946 2.640001 2.640001
SORT g 201 0.07958Z| 0.000396 0.0795382 0.000396
T4 g 2 3.822723] 1.8113B2 3.622723 1.811362 | |

1
Print | Save Cancel Help

Figure 14-3: Refreshing the Profile Report

If you select DIST in the User Modules field in the Profile dialog and then re-enter
only the statement calling TV at the Command Input Line, you will notice that only
the count for TV increases in the profiler report. You must re-enter the statement
calling DIST at the Command Input Line; the already-compiled library function is
executed again, making it available for profiling.

Building IDL Applications

The IDL Code Profiler

374 Chapter 14: Writing Efficient IDL Programs

The IDL Code Profiler Building IDL Applications

Chapter 15:

Solutions to
Common IDL Tasks

There are various programming tasks that are often used in IDL programs. This chapter describes
how to do some of the things you will commonly need to do in an IDL program. The tasks

discussed in this chapter include:

Determining Variable Scope 376
Determining if aKeywordisSet 377
Determining the Number of Array Elementsin
an Expressionor Variable 378

Determining if aVariableisDefined 379
Supplying Values for Missing Keywords . 380

Building IDL Applications

Supplying Values for Missing Arguments . 381
Determining the Size/Type of an Array . .. 382

Determining if a Variable Contains a Scalar or
ArrayVaue 385

Calling Functions/Procedures Indirectly . . 386
Executing Dynamically-Created IDL Code 387

375

376 Chapter 15: Solutions to Common IDL Tasks
Determining Variable Scope

The ARG_PRESENT function returns TRUE if its parameter will be passed back to
the caller. Thisfunction is useful in user-written procedures to determineif a created
value remains within the scope of the calling routine. ARG_PRESENT helps the
caller avoid expensive computations and prevents heap leaks. For example, assume
that a procedure exists which depends upon an argument passed by the caller:

PRO pass_it, i
If the caller does not specify i, the program may not function properly. You can check
to make sure that an argument was specified by using the following statement:

| F ARG PRESENT(i) THEN BEG N

Determining Variable Scope Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 377

Determining if a Keyword is Set

The KEYWORD_SET function returnsa 1 (true), if its parameter is defined and
nonzero; otherwise, it returns zero (false). For example, assume that a procedureis
written which performs and returns the result of a computation. If the keyword PLOT
is present and nonzero, the procedure also plotsits result as follows:

; Procedure definition.
PRO XYZ, result, PLOT = plot

; Conpute result.

;Plot result if keyword paraneter is set.
| F KEYWORD_SET(PLOT) THEN PLOT, result

END

A call to this procedure that produces a plot is shown in the following statement.
XYZ, R, /PLOT

Building IDL Applications Determining if a Keyword is Set

378 Chapter 15: Solutions to Common IDL Tasks

Determining the Number of Array Elements in
an Expression or Variable

The N_ELEMENTS function returns the number of elements contained in any
expression or variable. Scalars always have one element. The number of elementsin
arrays or vectorsis equal to the product of the dimensions. TheN_ELEMENTS
function returns zero if its parameter is an undefined variable. Theresult isawaysa
longword scalar.

For example, the following expression is equal to the mean of a numeric vector or
array.
TOTAL(arr) / N_ELEMENTS(arr)

Determining the Number of Array Elements in an Expression or Variable Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 379
Determining if a Variable is Defined

The N_ELEMENTS function provides a convenient method of determining if a
variableis defined. The following statement sets the variable abc to zero if itis
undefined; otherwise, the variable is not changed.

| F N_ELEMENTS(abc) EQ O THEN abc = 0

Building IDL Applications Determining if a Variable is Defined

380 Chapter 15: Solutions to Common IDL Tasks
Supplying Values for Missing Keywords

N_ELEMENTS s frequently used to check for omitted plain and keyword
arguments. N_PARAMS cannot be used to check for the number of keyword
arguments because it returns only the number of plain arguments. An example of
using N_ELEMENTS to check for a keyword parameter is as follows:

;Display an image with a given zoomfactor. If factor is omtted,
;use 4.
PRO zOOM i mage, FACTOR = factor

; Supply default for mssing keyword paraneter.
IF N_ELEMENTS(factor) EQ O THEN factor = 4

Note
If you use this method, the variable f act or isdefined has having the value 4, even
though no value was supplied by the user. If the ZOOM procedure were called
within another routine, the variable f act or would be defined for that routine and
for any other routines also called by the routine that called ZOOM. This can lead to
unexpected behavior if you pass arguments from one routine to another.

You can avoid this problem by using different variable names inside the routine
than are used in calling the routine. For example, if you wanted to supply a default
zoom factor in the example above, but did not want to change the value of f act or,
you could use an approach similar to the following:

| F N_ELEMENTS(factor) EQ O THEN zoonfactor = 4 $
ELSE zoonfactor = factor

You would then set the zoom factor internally using the zoonf act or variable,
leaving f act or itself unchanged.

Supplying Values for Missing Keywords Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 381

Supplying Values for Missing Arguments

The N_PARAMS function returns the number of positional arguments (not keyword
arguments) present in a procedure or function cal. A frequent useisto call
N_PARAMS to determineif al arguments are present and if not, to supply default
values for missing parameters. For example:

;Print values of XX and YY. If XX is omtted, print values of YY
;versus el enent nunber.
PRO XPRI NT, XX, YY

; Check nunber of argunents.
CASE N _PARAMS() OF

; Si ngl e-argunent case.
1: BEG N

;First argunment is y val ues.
Y = XX

;Create vector of subscript indices.
X = | NDGEN(N_ELEMENTS(Y))

END

; Two- ar gunent case.
2. BEG N

; Copy paraneters to |ocal argunents.
Y =YY & X = XX

END

;Print error nessage.
ELSE: MESSAGE, 'Wong nunber of argunents

ENDCASE

; Remai nder of procedure.

END

Building IDL Applications Supplying Values for Missing Arguments

382

Chapter 15: Solutions to Common IDL Tasks

Determining the Size/Type of an Array

The SIZE function returns a vector that contains information indicating the size and
type of the parameter. The returned vector is aways of longword type.

» Thefirst element is equal to the number of dimensions of the parameter and is
zero if the parameter is ascalar.

e The next elements contain the size of each dimension.

» After the dimension sizes, the last two elements indicate the data type and the
total number of elements, respectively. The datatype is encoded as follows:

Type Code Data Type
0 Undefined
1 Byte
2 Integer (16-bit)
3 Longword integer (32-bit)
4 Floating point
5 Double-precision floating
6 Complex floating
7 String
8 Structure
9 Double-precision complex floating
10 Pointer
11 Object reference
12 Unsigned integer (16-bit)
13 Unsigned longword integer (32-bit)
14 64-bit integer
15 Unsigned 64-bit integer

Table 15-1: Type Codes Returned by the SIZE Function

Determining the Size/Type of an Array

Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 383

The data type can also be returned by setting the TY PE keyword to SIZE. In this
case, the return value of the SIZE function is the data type code of the given
expression.

Examples

Example 1

Assume A is aninteger array with dimensions of (3,4,5). The statements:

arr = | NDGEN(3, 4, 5)
S = Sl ZE(arr)

assign to the variable S a six-element vector containing:

Element Value Description
S 3 Three dimensions
S 3 First dimension
S 4 Second dimension
S 5 Third dimension
S 2 Integer type
S 60 Number of elements= 3*4*5

Table 15-2: SIZE Values

The following code segment checksto seeif thevariable ar r istwo-dimensional and
extracts the dimensions:

;Create a vari abl e.
arr =[[1,2,3],[4,5,6]]

; Get size vector.
S = Sl ZE(arr)

;Check if two di nensional .
IF S[0] NE 2 THEN $
;Print error nessage.
MESSAGE, 'Variable a is not two dinensional.'

: Get nunber of colums and rows.
NX = §[1] & NY = §[2]

PRINT, "Array is ', NX, ' colums by ', NY, ' rows.'

Building IDL Applications Determining the Size/Type of an Array

384 Chapter 15: Solutions to Common IDL Tasks

IDL prints:
Array is 3 columms by 2 rows.
Example 2

The following example illustrates two ways in which to determine the type code of
the input expression.

The first method requires you to access the correct element of the array returned by
the SIZE function (the second to last element). For example:
array = [[1,2,3], [4,5,6], [7,8,9]]

sz = Sl ZE(array)
type = sz[3]

;A nmore flexible nethod:
sz = Sl ZE(array)

n = N_ELEMENTS(sz)

type = sz[n-2]

The second method involves using the TY PE keyword to SIZE. In this case, the value
returned by the SIZE function contains only the type code of the input expression:

type = Sl ZE(array, /TYPE)

Determining the Size/Type of an Array Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 385

Determining if a Variable Contains a Scalar or
Array Value

The SIZE function can also be used to determine whether a variable holds a scalar
value or an array. Setting the DIMENSIONS keyword causes the SIZE function to
return a0 if the variable is a scalar, or the dimensionsif the variable is an array, as
shown in the following example:

1

[1]

[1,2,3]
([1,2],[3 4]]

o0 wm>»

PRI NT, SIZE(A, /DI MENSI ONS)
PRI NT, SIZE(B, /DI MENSI ONS)
PRI NT, SIZE(C, /DI MENSI ONS)
PRI NT, SIZE(D, /DI MENSI ONS)

IDL Prints:

N wWEF O

Building IDL Applications Determining if a Variable Contains a Scalar or Array Value

386 Chapter 15: Solutions to Common IDL Tasks

Calling Functions/Procedures Indirectly

The CALL_FUNCTION and CALL_PROCEDURE routines are used to indirectly
call functions and procedures whose nhames are contained in strings. Although not as
flexible asthe EXECUTE function (see the following page), CALL_FUNCTION and
CALL_PROCEDURE are much faster, and should be used in preference to
EXECUTE whenever possible.

Example

This example code fragment, taken from the routine SVDFIT, calls a function whose
name is passed to SVDFIT viaakeyword parameter as a string. If the keyword
parameter is omitted, the function POLY is called.

; Functi on decl arati on.
FUNCTI ON SVDFIT, ..., FUNCT = funct

; Use default nane, PCLY, for function if not specified.
I F N_ELEMENTS(FUNCT) EQ O THEN FUNCT = ' POLY'

; Make a string of the form"a = funct(x,n)", and execute it.
Z = EXECUTE(' A = ' +FUNCT+ (X, M ')

The above example is easily made more efficient by replacing the call to EXECUTE
with the following line:

A = CALL_FUNCTI ON(FUNCT, X, M

Calling Functions/Procedures Indirectly Building IDL Applications

Chapter 15: Solutions to Common IDL Tasks 387
Executing Dynamically-Created IDL Code

The EXECUTE function compiles and executes one or more IDL statements
contained in its string parameter during runtime. EXECUTE islimited by two
factors:

e Cdlsto EXECUTE cannot be nested, so aroutine called by EXECUTE cannot
use EXECUTE itsdlf.

* The need to compile the string at runtime makes EXECUTE inefficient in
terms of speed.

The CALL_FUNCTION and CALL_PROCEDURE routines provide much of the
functionality of EXECUTE without imposing these limitations and should be used in
preference to EXECUTE when possible.

Theresult of the EXECUTE function istrue (1) if the string was successfully
compiled and executed. If an error occurred during either phase, the result isfalse (0).
If an error occurs, an error message is printed.

Multiple statements in the string should be separated with the “&” character. GOTO
statements and labels are not allowed.

Building IDL Applications Executing Dynamically-Created IDL Code

388 Chapter 15: Solutions to Common IDL Tasks

Executing Dynamically-Created IDL Code Building IDL Applications

Chapter 16:

Building Cross-
Platform Applications

The following topics are covered in this chapter:

OvErvIeW . ..o 390
Which Operating System is Running? ... 391
File and Path Specifications 392
Environment Variables 395
Filesand1/O 396
Math Exceptions 399
Operating System Access 400

Building IDL Applications

Display Characteristics and Palettes 401
Fonts........ .. 402
Printing. ..., 403
SAVEand RESTORE 404
Widgets ... 405
Using External Code 408
IDL DataMinerlIssues 409

389

390

Chapter 16: Building Cross-Platform Applications

Overview

Overview

IDL isdesigned as a platform-independent environment for data analysis and
programming. Because of this, the vast mgjority of IDL’s routines operate the same
way no matter what type of computer system you are using. IDL’s cross-platform
development environment makes it easy to develop an application on one type of
system for use on any system IDL supports.

Despite IDL’s cross-platform nature, there are differences between the computers that
make up a multi-platform environment. Operating Systems supply resourcesin
different ways. While IDL attempts to abstract these differences and provide a
common environment for all Windows, Macintosh, UNIX, and VM S machines, there
are some cases where the discrepancies cannot be overcome. This chapter discusses
aspects of IDL that you may wish to consider when developing an application that
will run on multiple types of computer.

Note
This chapter is not an exhaustive list of differences between versions of IDL for
different platforms. Rather, it coversissues you may encounter when writing cross-
platform applicationsin IDL.

Building IDL Applications

Chapter 16: Building Cross-Platform Applications 391
Which Operating System is Running?

In some cases, in order to effectively take platform differences into account, your
application will need to execute different code segments on different systems.
Operating system and IDL version information is contained in the IDL system
variable 'VERSION. For example, you could use an IDL CASE statement that |ooks
something like the following to execute code that pertains to a particular operating

system family:
CASE ! VERSI ON. OS_ FAM LY OF
' MacCs' . Code for Macintosh
"uni x' . Code for Unix
"vis' . Code for VMS
"W ndows' : Code for W ndows
ENDCASE

Writing conditional IDL code based on platform information should be a last resort,
used only if you cannot accomplish the same task in a platform-independent manner.

Building IDL Applications Which Operating System is Running?

392 Chapter 16: Building Cross-Platform Applications
File and Path Specifications

Different operating systems use different path specification syntax and directory
separation characters. The following table summarizes the different characters used
by different operating systems; see !PATH in the IDL Reference Guide for further
details on path specification.

Operating Directory Path Element
System Separator Separator
MacOs : (colon) , (comma)
UNIX / (forward slash) : (colon)
VMS . (dot) , (comma)
Windows \ (backward dash) ; (semicolon)

Table 16-1: Directory and Path Element Separator Characters

Asaresult of these differences, specifying filenames and paths explicitly in your IDL
application can cause problems when moving your application to a different
platform. You can effectively isolate your IDL programs from platform-specific file
and path specification issues by using the FILEPATH and DIALOG_PICKFILE
functions.

Choosing Files at Runtime

To allow users of your application to choose afile at runtime, use the
DIALOG_PICKFILE function. DIALOG_PICKFILE will always return the file path
with the correct syntax for the current platform. Other methods (such asreading afile
name from atext field in awidget program) may or may not provide a proper file
path.

Selecting Files Programmatically
To give your application access to afile you know to be installed on the host, use the

FILEPATH function. By default, FILEPATH alows you to select files that areincluded
inthe IDL distribution tree. Chances are, however, that afile you supply as part of your

File and Path Specifications Building IDL Applications

Chapter 16: Building Cross-Platform Applications 393

own application isnot included in the IDL tree. You can still use FILEPATH by
explicitly specifying the root of the directory tree to be searched.

root

rsi MYAPP other

idl

Figure 16-1: A possible directory hierarchy for an IDL application.

For example, suppose your application isinstalled in a subdirectory named MYAPP of
theroot directory of the filesystem that contains the IDL distribution. You could use
the FILEPATH function and set the ROOT_DIR keyword to the root directory of the
filesystem, and use the SUBDIRECTORY keyword to select the MYAPP directory.
If you are looking for afile named nmyapp. dat , the FILEPATH command looks like
this:

file = FI LEPATH(' nyapp. dat', ROOT DI R=root, SUBDI R=' MYAPP')

The problem that remainsis how to specify the value of r oot properly on each
platform. Thisis one case where it is very difficult to avoid writing some platform-
specific code. We could write an IDL CASE statement each time the FILEPATH
function is used. Instead, the following code segment sets an IDL variable to the
string value of the root of the filesystem, and passes that variable to the ROOT_DIR
keyword. The CASE statement looks like this:

CASE ! VERSI ON. CS_FAM LY OF

' MacCs' : rootdir = STRMD(!DIR 0, STRPCS(!DIR ':'))
"uni x' : rootdir ="/"'
'vns' : rootdir = ' SYS$SYSDEVI CE: '
"Wndows' : rootdir = STRMD(!D R 0, 2)

ENDCASE

file = FILEPATH(' nyapp. dat', ROOT=rootdir, SUBDI R=" MYAPP')

Note that the root directories under Unix and VM S are well defined, whereas the root
directories on machines running the Macintosh OS or Microsoft Windows must be

Building IDL Applications File and Path Specifications

394 Chapter 16: Building Cross-Platform Applications

determined by parsing the IDL system variable |DIR. On the Macintosh, the rootdir
variable takes the value of !DIR up to the first directory separator character (acolon,
in this case). On machines running Microsoft Windows, the root is assumed to be the
drive letter of the hard drive and the following colon — usualy “C:”.

File and Path Specifications Building IDL Applications

Chapter 16: Building Cross-Platform Applications 395
Environment Variables

UNIX and VM S versions of IDL have the ability to use environment variables (or
logical names, under VM) to store information about the environment in which IDL
isrunning. Typically, environment variables are used to store information like the
path to the main IDL directory, or to abatch file to be read and executed when IDL
starts up. See “Environment Variables Used by IDL” in Chapter 2 of the Using IDL
manual for details.

Microsoft Windows systems also have the ability to use environment variables to
store information, but this form of information storage is much less common under
Windows. On the Macintosh, there is no analogue of the environment variable.

Rather than using environment variables, the IDL Development Environment stores
information in preferences; the mechanisms used to store preferences is different
between platforms, but is generally transparent to you. Configuration settings you
specify in the preferences dialogs of the IDL Development Environment are saved
and are available to the IDE the next time it is started.

What does this al mean in the context of writing IDL applications for multiple
platforms? Simply this: don’t rely on environment variables in your programs unless
you know that:

1. thetarget platform supports environment variables, and

2. the appropriate environment variables are defined as you wish them to be on
the target platform.

Building IDL Applications Environment Variables

396 Chapter 16: Building Cross-Platform Applications
Files and I/O

IDL’sfile input and file output routines are designed to work identically on all
platforms, where possible. In the case of basic operations, such as opening atext file
and reading its contents, importing an image format file into an IDL array, or writing
ASCII datato afile on ahard disk, IDL’s /O routines work the same way on all
platforms. In more complicated cases, however, such as reading data stored in binary
data format files, different operating systems may use files that are structured
differently, and extra care may be necessary to ensurethat IDL reads or writesfilesin
the proper way.

Before attempting to write a cross-platform IDL application that uses morethan basic
file 1/O, you should read and understand the sections in Chapter 8, “Files and
Input/Output” that apply to the platforms your application will support. The
following are afew topics to think about when writing IDL applications that do
input/output.

Byte Order Issues

Computer systems on which IDL runs support two ways of ordering the bytes that
make up an arbitrary scalar: big endian, in which multiple byte numbers are stored in
memory beginning with the most significant byte, and little endian, in which
numbers are stored beginning with the least significant byte. The following table lists
the processor types and operating systems IDL supports and their byte ordering

schemes:
Processor Type Operating System Byte Ordering

Digital Alpha AXP True4 UNIX little-endian
AlphaVMS little-endian
Windows NT little-endian

Hewlett Packard PA-RISC | HP-UX big-endian

IBM RS/6000 AlX big-endian

Intel x86 Linux little-endian
Solaris x86 little-endian
Windows little-endian

Table 16-2: Byte ordering schemes used by platforms that support IDL

Files and 1/0 Building IDL Applications

Chapter 16: Building Cross-Platform Applications 397

Processor Type Operating System Byte Ordering
Motorola PowerPC Macintosh OS big-endian
SGI R4000 and up Irix big-endian
Sun SPARC SunOS big-endian
Solaris big-endian

Table 16-2: Byte ordering schemes used by platforms that support IDL

The IDL routines BY TEORDER and SWAP_ENDIAN alow you to convert
numbers from big endian format to little endian format and vice versa. It is often
easier, however, to use the XDR (for eXternal Data Representation) format to store
datathat you know will be used by multiple platforms. XDR files write binary datain
astandard “canonical” representation; as aresult, the files are dightly larger than
pure binary datafiles. XDR files can be read and written on any platform that
supports IDL. XDR isdiscussed in detail in “Portable Unformatted | nput/Output” on
page 204.

Logical Unit Numbers

Logical Unit Numbers (LUNS) are assigned to individua fileswhen thefiles are
opened by the IDL OPENR/OPENU/OPENW commands, and are used to specify
which file IDL should read from or write to. There are atotal of 128 LUNs available
for assignment to files. Whileit is possible to assign any of the integers between 1-99
to agiven file, when writing applications for othersit is good programming practice
tolet IDL assign and manage the LUNSs itself. By using the GET_LUN keyword to
the OPEN routines, you can ask IDL to assign afree Logical Unit Number between
100-128 to the specified file. Letting IDL assign the LUN from the list of free unit
numbers ensures that your application does not attempt to use a LUN already in use
by someone else's application. See the description of the GET_LUN keyword to
OPEN in the IDL Reference Guide and “Logical Unit Numbers (LUNS)” on

page 157.

Macintosh File Pointer

IDL providesthe POINT_LUN procedure to alow you to explicitly position the file
pointer anywhere within an open file. Note, however, that on the Macintosh, the
POINT_LUN routine cannot be used to position the file pointer past the end of the
file, asit can on other platforms.

Building IDL Applications Files and 1/O

398 Chapter 16: Building Cross-Platform Applications

Macintosh File Types and Creators

The Macintosh file system attaches two pieces of information to each file that is not
used by other operating systems. The Macintosh file type specifies what type of data
is stored in the file—for example, afile may contain text, an image, or unspecified
binary information. The Macintosh file creator specifies which application created
thefile.

Text files saved by IDL on the Macintosh have the default file type “ TEXT”. Binary
files saved by IDL on the Macintosh have the default file type “BIN ” (note that the
fourth character is a space). All files created by IDL have the default creator type
“MIDL". The default types can be overridden using the MACCREATOR and
MACTY PE keywords to the OPEN routines. See OPEN in the IDL Reference Guide
for details.

Naming of IDL .pro Files

When naming IDL .pro files used in cross-platform applications, be aware of the
various platforms' file naming conventions and limitations. For example, the “$”
character is not allowed in afilename under VMS.

Be careful with case when naming files. For example, while Microsoft Windows
systems present file names using mixed case, file names are in fact case-insensitive.
File names are case-insensitive under VM S as well. Under Unix and the Macintosh
operating system, file names are case sensitive—file.pro is different from File.pro.
When writing cross-platform applications, you should avoid using filenames that are
different only in case. The safest courseis to use filenames that are all lower case.

Remember, too, that IDL commands are themselves case-insensitive. If entered at the
IDL command prompt, the following are equivalent:

| DL> conmand
| DL> COMVAND
| DL> CommanD

One upshot of thisisthat if you have filenames that differ only in case and you use
IDL’s automatic compilation feature, on platforms where case matters, IDL will look
for the lower-case version of the file name first. You can specify case-sensitive
filenames if you use the .COMPILE and .RUN executive commands—but again, we
recommend that you use unigue file names always.

Files and 1/0 Building IDL Applications

Chapter 16: Building Cross-Platform Applications 399

Math Exceptions

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. Beginning with
version 5.1, IDL usesthe |EEE floating-point standard on all supported systems. Asa
result, IDL always substitutes the special floating-point values NaN and Infinity

when it detects a math error. (See “ Special Floating-Point Values’ on page 428 for
details on NaN and Infinity.)

Building IDL Applications Math Exceptions

400 Chapter 16: Building Cross-Platform Applications

Operating System Access

While IDL provides ways to interact with each operating system under which it runs,
it is not generally useful to use operating-system native functions in a cross-platform
IDL program. If you find that you must use operating-system native features, be sure
to determine the current operating system (as described in “Which Operating System
is Running?’ on page 391) and branch your code accordingly.

Operating System Access Building IDL Applications

Chapter 16: Building Cross-Platform Applications 401

Display Characteristics and Palettes

Finding Screen Size

Usethe GET_SCREEN_SIZE function to determine the size of the screen on which
your application is displayed. Writing code that checks the screen size allows your
application to handle different screen sizes gracefully.

Number of Colors Available

UsetheN_COLORSand TABLE SIZE fields of the !D system variableto determine
the number of colors supported by the display and the number of color-table entries
available, respectively.

Make sure that your application handles relatively small numbers of colors (less than
256, say) gracefully. For example, Microsoft Windows reserves the first 20 colors out
of all theavailable colorsfor its own use. These colors are the ones used for title bars,
window frames, window backgrounds, scroll bars, etc. If your application is running
on aWindows machine with a 256-color display, it will have at most 236 colors
available to work with.

Similarly, make sure that your application handles TrueColor (24-bit or 32-bit color)
displays aswell. If your application uses IDL's color tables, for example, you will
need to force the application into 8-bit mode using the command

DEVI CE, DECOVMPOSED=0

to use indexed-color mode on a machine with a TrueColor display.

Building IDL Applications Display Characteristics and Palettes

402 Chapter 16: Building Cross-Platform Applications

Fonts

IDL usesthree font systems for writing characters on the graphics device, whether
that device be adisplay monitor or a printer: Hershey (vector) fonts, TrueType
(outline) fonts, and device (hardware) fonts. Fonts are discussed in detail in
Appendix H, “Fonts’ in the IDL Reference Guide.

Both TrueType and Vector fonts are displayed identically on all of the platforms that
support IDL. Thismeansthat if your cross-platform application uses either the
TrueType fonts supplied with IDL or the Vector fonts, there is no need for platform-
dependent code.

Fonts Building IDL Applications

Chapter 16: Building Cross-Platform Applications 403

Printing

IDL displays operating-system native dialogs using the DIALOG_PRINTJOB and
DIALOG_PRINTERSETUP functions. Since the dialogs that control printing and
printer setup differ between systems, so do the options and capabilities presented via
IDL’s print dialogs. If your IDL application uses IDL's printing dialogs, make sure
that your interface calls the dialog your user will expect for the platform in question.

Building IDL Applications Printing

404 Chapter 16: Building Cross-Platform Applications

SAVE and RESTORE

Unless your cross-platform application supports VMS, there are no platform-specific
issues to be concerned with. However, if you distribute your application via DL
SAVE files, remember that files containing IDL routines are not necessarily
compatible between IDL releases. Always save your original code and re-save when
anew version of IDL isreleased. SAVE files containing data are always compatible
between releases of IDL.

If your application supports VMS, you should be aware that SAVE files created on
VMS machineswith IDL versions before release 5.1 stored floating-point numbersin
VAX format. Beginning with version 5.1, IDL stores all floating-point numbersin
|EEE format. When IDL reads an older data file created on a VA X, it automatically
converts the floating-point numbers from VAX format to | EEE format.

Note also that if you are restoring afile created with VAX IDL version 1, you must
restore on a machine running VMS.

SAVE and RESTORE Building IDL Applications

Chapter 16: Building Cross-Platform Applications 405
Widgets

IDL’s user interface toolkit is designed to provide a*“ native” look and feel to widget-
based IDL applications. Where possible, widget toolkit elements are built around the
operating system’s native dialogs and controls; as aresult, there are instances where
the toolkit behaves differently from operating system to operating system. This
section describes a number of platform-dependenciesin the IDL widget toolkit.
Consult the descriptions of theindividual DIALOG and WIDGET routinesin the IDL
Reference Guide for complete details.

Dialog Routines

IDL’s DIALOG_ routines (DIALOG_PICKFILE, etc.) rely on operating system
native dialogs for most of their functionality. This means, for example, that when you
use DIALOG_PICKFILE inan IDL application, a Windows user will see the
Windows-native file selection dialog, a Macintosh user will see the appropriate
Macintosh-native file selection dialog (there are two), and Motif users will see the
Motif file selection dialog. Consult the descriptions of the individual DIALOG
routines in the IDL Reference Guide for notes on the platform dependencies.

Base Widgets

Base widgets (created with the WIDGET_BA SE routine) play an especially
important role in creating widget-based IDL applications because their behavior
controls the way the application and its components are iconized, layered, and
destroyed. See Iconizing, Layering, and Destroying Groups of Top-Level Bases
under WIDGET _BASE in the IDL Reference Guide for details about the platform-
dependent behavior.

Positioning Widgets within a Base Widget

The widget geometry management keywords to the WIDGET_BASE routine allow a
great deal of flexibility in positioning child widgets within a base widget. When
building cross-platform applications, however, making use of IDL’s explicit
positioning features can be counterproductive.

Because IDL attempts to provide a platform-native look on each platform, widgets
depend on the platform’s current settings for font, font size, and “window dressing”
(things like the thickness of borders and three-dimensional appearance of controls).
Asaresult of the platform-specific appearance of each widget, attempting to position
individual widgets manually within abase will seldom give satisfactory results on al
platforms. Instead, insert widgets inside base widgets that have the ROW or

Building IDL Applications Widgets

406

Chapter 16: Building Cross-Platform Applications

COLUMN keywords set, and let IDL determine the correct geometry for the current
platform automatically. You can gain afiner degree of control over the layout by
placing groups of widgets within sub-base widgets (that is, base widgets that are the
children of other base widgets). This alows you to control the column or row layout
of small groups of widgets within the larger base widget.

In particular, refrain from using the X/Y SIZE and X/Y OFFSET keywords in cross-
platform applications. Using the COLUMN and ROW keywords instead will cause
IDL to calculate the proper (platform-specific) size for the base widget based on the
size and layout of the child widgets.

Fonts used in Widget Applications

You can specify the font used in awidget viathe FONT keyword. In general, the
default fonts used by IDL widgets will most closely approximate the look of a
platform-native application. If you choose to specify the fonts used in your widget
application, however, note that the different platforms have different font-naming
schemes for device fonts. While device fonts will provide the best performance for
your application, specifying device fonts for your widgets requires that you write
platform-dependent code as described in “Which Operating System is Running?’ on
page 391. You can avoid the need for platform-dependent code by using the
TrueType fonts supplied with IDL; there may be a performance penalty when the
fontsareinitialy rendered. See Appendix H, “Fonts’ in the IDL Reference Guide for
details.

Application Menu Bars

The Macintosh is unique among the platforms on which IDL runsin that it providesa
single menu bar at the top of the screen for the currently-active application. The
APP_MBAR keyword to the WIDGET_BA SE function allows your application to
“take over” the Macintosh system menu when your IDL application is active. If you
wish to place the menu for your application in an individua window, use the MBAR
keyword instead. Code that usesthe APP_MBAR keyword acts asif the MBAR
keyword had been specified. See APP_MBAR under WIDGET_BASE inthe IDL
Reference Guide for details.

Motif Resources

Widgets

Use the RESOURCE_NAME keyword to apply standard X Window System
resources to awidget on aMotif system. Resources specified viathe
RESOURCE_NAME keyword will be quietly ignored on Windows and Macintosh
systems. See RESOURCE_NAME under WIDGET_BASE in the IDL Reference

Building IDL Applications

Chapter 16: Building Cross-Platform Applications 407

Guidefor details. In general, you should not expect to be able to duplicate the level of
control available via X Window System resources on other platforms.

WIDGET_STUB

On Moatif platforms, you can use the WIDGET_STUB routine to include widgets
created outside IDL (that is, with the Motif widget toolkit) in your IDL applications.
The WIDGET_STUB mechanism isonly available under Unix and VMS, and isthus
not suitable for use in cross-platform applications that will run under Microsoft
Windows or on the Macintosh. WIDGET_STUB is described in the External
Development Guide.

Widget Event Inconsistencies

Different windowing systems provide different types of events when graphical items
are displayed and manipulated. IDL attempts to provide consistent functionality on
all windowing systems, but is not always completely successful. For example,
enter/exit tracking events are not generated by some windowing systems. IDL
attempts to provide appropriate enter/exit events, but behaviors may differ on
different platforms.

Handle individual widget events carefully, and be sure to test your code on all
platforms supported by your application.

Building IDL Applications Widgets

408 Chapter 16: Building Cross-Platform Applications

Using External Code

The use of programs written in languages other than IDL—either by calling code
from an IDL program viaCALL_EXTERNAL or LINKIMAGE or viathe callable
IDL mechanism—is an inherently platform-dependent process. Writing a cross-
platform IDL program that uses CALL_EXTERNAL or LINKIMAGE requires that
you provide the appropriate programs or shared libraries for each platform your
application will support, and is beyond the scope of this chapter. Similarly, the
Callable IDL mechanism is necessarily different from platform to platform. See the
External Development Guide for details on writing and using external code along
with IDL.

Using External Code Building IDL Applications

Chapter 16: Building Cross-Platform Applications 409

IDL DataMiner Issues

The IDL DataMiner provides a platform-independent interface to IDL's Open
Database Connectivity (ODBC) features. Note, however, that the ODBC drivers that
alow connection to different databases are platform-dependent, and may require
platform-dependent coding. In addition, the dialogs called by the
DIALOG_DBCONNECT function are provided by the specific ODBC driver in use,
and will be different from data source to data source.

Building IDL Applications IDL DataMiner Issues

410 Chapter 16: Building Cross-Platform Applications

IDL DataMiner Issues Building IDL Applications

Chapter 17:

Controlling Errors

The following topics are covered in this chapter:

OVEIVIEW ..ot 412
Default Error-Handling Mechanism 413
Disappearing Variables 414

Controlling Errors Using CATCH
Controlling Errors Using ON_ERROR . . . 419

Building IDL Applications

Controlling Input/Output Errors 420
Error Signaling...................... 422
Obtaining Traceback Information 424
ErrorHandling 425
MahErrors ... 427

411

412

Chapter 17: Controlling Errors

Overview

Overview

This chapter discusses routines and methods used to check and handle errors that
occur in IDL programs. The routines covered here are rarely used interactively.

IDL divides possible execution errors into three categories: input/output, math, and
al others. There are three main error-handling routines. CATCH, ON_ERROR, and
ON_IOERROR. CATCH is ageneralized mechanism for handling exceptions and
errors. The ON_ERROR routine handles regular errors when an error handler
established by the CATCH procedure is not present. The ON_IOERROR routine
allows you to change the default way in which input/output errors are handled. The
FINITE and CHECK_MATH routines provide control over math errors.

Building IDL Applications

Chapter 17: Controlling Errors 413
Default Error-Handling Mechanism

In the default case, whenever an error is detected by IDL during the execution of a
program, program execution stops and an error message is printed. The execution
context is that of the program unit (procedure, function, or main program) in which
the error occurred.

Sometimesit is possible to recover from an error by manually entering statementsto
correct the problem. Possibilities include setting the values of variables, closing files,
etc., and then entering the command .CONTINUE, which resumes execution of the
program unit at the beginning of the statement that caused the error.

Asan example, if an error occurs because an undefined variable is referenced, you
can simply define the variable from the keyboard, then continue execution with

. CON. Of course, thisisatemporary solution. You should still edit the program file to
fix the problem permanently.

Building IDL Applications Default Error-Handling Mechanism

414

Chapter 17: Controlling Errors

Disappearing Variables

IDL users may find that all their variables have seemingly disappeared after an error
occurs inside a procedure or function. The misunderstood subtlety is that after the
error occurs, IDL’s context isinside the called procedure, not in the main level. All
variablesin procedures and functions, with the exception of parameters and common
variables, arelocal in scope. Typing RETURN or RETALL will make the lost
variables reappear.

RETALL isbest suited for use when an error is detected in a procedure and it is
desired to return immediately to the main program level despite nested procedure
calls. RETALL issues RETURN commands until the main program level is reached.

The HELP command can be used to see the current call stack (i.e., which program
unit IDL isin and which program unit called it). For more information, see HELP in
the IDL Reference Guide.

Disappearing Variables Building IDL Applications

Chapter 17: Controlling Errors 415
Controlling Errors Using CATCH

The CATCH procedure provides a generalized mechanism for handling any type of
errors and exceptions within IDL. Calling CATCH establishes an error handler for
the current procedure that intercepts al errors that can be handled by IDL, with the
exception of non-fatal warnings such as math errors (e.g., floating-point underflow).
The CATCH mechanismissimilar to C'sset j np/ | ongj np facilitiesor C++'s
cat ch/t hr owfacilities.

When an error occurs, each active procedure, beginning with the offending procedure
and proceeding up the call stack to the main program level, is examined for an error
handler (established by acall to CATCH). If an error handler is found, control
resumes at the statement after the call to CATCH. The index of the error is returned
in the argument to CATCH and is also stored in 'ERROR_STATE.CODE. The
associated error message is stored in 'ERROR_STATE.MSG. If no error handlers are
found, program execution stops, an error message is issued, and control revertsto the
interactive mode.

For more information, see CATCH and 'ERROR_STATE in the IDL Reference
Guide.

Interaction of CATCH, ON_ERROR, and ON_IOERROR

Error handlers established by callsto CATCH supersede callsto ON_ERROR.
However, callsto ON_IOERROR made in the procedure that causes an /O error
supersede any error handling mechanisms created with CATCH and the program

Building IDL Applications Controlling Errors Using CATCH

416 Chapter 17: Controlling Errors

branches to the label specified by ON_IOERROR. The following figureis aflow
chart of how errorsare handled in IDL.

Error or Exception is Generated

Isitan /O error?

No |sON_IOERROR

routine in use?

Yes
Handle error with
Isthere an error handler .
defined by the CATCH AT CH-defined error
routine? andler and continue
program execution.
 J
Handle error as
indicated by
Handle error as ON_IOERROR setting.

indicated by setting of
ON_ERROR routine or
use default error handling.

Figure 17-1: Error Handling in IDL.

Controlling Errors Using CATCH Building IDL Applications

Chapter 17: Controlling Errors 417

Canceling an Error Handler

Call CATCH with the CANCEL keyword set to cancel a procedure’s error handler.
This cancellation does not effect other error handlers that may be established in other
active procedures.

Generating an Exception

To generate an exception and cause control to return to the error handler, use the
MESSAGE procedure. Calling MESSAGE generates an exception that setsthe
IERROR_STATE system variable. '[ERROR_STATE.MSG is set to the string used
as an argument to MESSAGE. See “Error Signaling” on page 422.

Example Using CATCH
The following procedure illustrates the use of CATCH:
PRO ABC

;Define variable A
A = FLTARR(10)

:Establish error handl er. When errors occur, the i ndex of the error
;is returned in the variable Error_status. Initially, this
;argunent is set to zero.

CATCH, Error_status

; This statenent begins the error handler.
IF Error_status NE O THEN BEG N

PRINT, 'Error index: ', Error_status
PRI NT, 'Error nmessage:', !ERR _STRI NG

; Handl e the error by extending A
A=FLTARR(12)

ENDI F

;. Cause an error.
Al 11] =12

; Even though an error occurs in the |ine above, program execution
;continues to this point because the event handl er extended the

;definition of A so that the statenent can be re-executed.
HELP, A

END

Building IDL Applications Controlling Errors Using CATCH

418 Chapter 17: Controlling Errors

Running the ABC procedure causes | DL to produce the following output and control
returns to the interactive prompt:

Error index: -101

Error nessage:

Attenmpt to subscript Awith <INT (11)> is out of range.
A FLOAT = Array(12)

Controlling Errors Using CATCH Building IDL Applications

Chapter 17: Controlling Errors 419
Controlling Errors Using ON_ERROR

The ON_ERROR procedure determines the action taken when an error is detected
inside a user procedure or function and no error handlers established with the
CATCH procedure are found. The possible options for error recovery are shown in
the following table:

Value Action
0 Stop immediately in the context of the procedure or function that
caused the error. Thisis the default action.
1 Return to the main program level and stop.
2 Return to the caller of the program unit that called ON_ERROR
and stop.
3 Return to the program unit that called ON_ERROR and stop.

Table 17-1: Error Recovery Options

One useful option isto use ON_ERROR to cause control to be returned to the caller
of aprocedurein the event of an error. The statement:

ON_ERROR, 2

placed at the beginning of a procedure will have this effect. Include this statement in
library procedures and other routines that will be used by others once the routines
have been debugged. Thisform of error recovery makes debugging a routine difficult
because the routine is exited as soon as an error occurs; therefore, it should be added
once the code is completely tested.

Note that error handlers established by CATCH supersede callsto ON_ERROR
made in the same procedure.

Building IDL Applications Controlling Errors Using ON_ERROR

420 Chapter 17: Controlling Errors
Controlling Input/Output Errors

The default action for handling input/output errorsisto treat them exactly like regular
errors and follow the error handling strategy set by ON_ERROR. You can alter this
default by using the ON_IOERROR procedure to specify the label of a statement to
which execution should jump if an input/output error occurs. When IDL detects an
input/output error and an error-handling statement has been established, control
passes directly to the given statement without stopping program execution. In this
case, No error messages are printed.

Note that callsto ON_IOERROR made in the procedure that causes an |/O error
supersede any error handling mechanisms created with CATCH and the program
branches to the label specified by ON_IOERROR.

When writing procedures and functions that are to be used by others, it is good
practice to anticipate and handle errors caused by the user. For example, the
following procedure segment, which opens afile specified by the user, handles the
case of anonexistent file or read error.

;Define a function to read, and return a 100-el enent, fl oating-

; point array.
FUNCTI ON READ_DATA, FI LE_NAME

;Declare error | abel.
ON_| CERROR, BAD

; Use the GET_LUN keyword to allocate a logical file unit.
OPENR, UNIT, FILE NAME, /GET_LUN

; Define data array.
A = FLTARR(100)

;Read it.
READU, UNIT, A

; Clean up and return.
GOTO, DONE

; Exception label. Print the error message.
BAD: PRI NT, !ERR _STRI NG

;Close and free the input/output unit.
DONE: FREE_LUN, UNIT

Controlling Input/Output Errors Building IDL Applications

Chapter 17: Controlling Errors 421

:Return the result. This will

be undefined if an error occurred.
RETURN, A

END

The important things to note in this example are that the FREE_LUN procedure is
aways called, even in the event of an error, and that this procedure aways returnsto

its caller. It returns an undefined value if an error occurs, causing its caller to
encounter the error.

Building IDL Applications Controlling Input/Output Errors

422 Chapter 17: Controlling Errors
Error Signaling

The MESSAGE procedureis used by user procedures and functionsto issue errors. It
has the form:

MESSAGE, Text
where Text is a scalar string that contains the text of the error message.

The MESSAGE procedure issues error and informational messages using the same
mechanism employed by built-in IDL routines. By default, the message isissued as
an error, the message is output, and IDL takes the action specified by the
ON_ERROR procedure.

As aside effect of issuing the error, appropriate fields of the system variable
IERROR_STATE are set; the text of the error message is placed in
IERROR_STATE.MSG, or in |[ERROR_STATE.SYS MSG for the operating
system’s component of the error message. See “Error Handling” on page 425 or
IERROR_STATE in the IDL Reference Guide for more information.

As an example, assume the statement:
MESSACE, ' Unexpected val ue encountered.’

is executed in a procedure named CALC. IDL would print:
% CALC:. Unexpected val ue encount ered.

and execution would halt.

The MESSAGE procedure accepts several keywords that modify its behavior. See
MESSAGE in the IDL Reference Guide for additional details.

Another use of MESSAGE involves re-signaling trapped errors. For example, the
following code uses ON_IOERROR to read from afile until an error (presumably
end-of-file) occurs. It then closes the file and reissues the error.

; Open the data file.
OPENR, UNIT, 'DATA. DAT', /GET_LUN

;Arrange for junmp to | abel EOD when an input/output error occurs.
ON_| CERROR, ECD

;Read every line of the file.
VWH LE 1 DO READF, UNI T, LINE

;An error has occurred. Cancel the input/output error trap.
EOD: ON_I CERROR, NULL

Error Signaling Building IDL Applications

Chapter 17: Controlling Errors 423

:Close the file.
FREE LUN, UNIT

; Reissue the error. ! ERROR _STATE. MSG contains the appropriate

; text. The | CERROR keyword causes it to be issued as an

; input/output error. Use of NONAME prevents MESSAGE from tacking
; the name of the current routine to the begi nning of the nmessage
; string since ! ERROR _STATE. M5G al ready contains it.

MESSACE, ! ERROR_STATE. MSG / NONAME, /1 CERROR

Building IDL Applications Error Signaling

424 Chapter 17: Controlling Errors

Obtaining Traceback Information

It is sometimes useful for a procedure or function to obtain information about its
caler(s). The HEL P procedure returns, in astring array, the contents of the procedure
stack when the CALLS keyword parameter is specified. The first element of the
resulting array contains the module name, source filename, and line number of the
current level. The second element contains the same information for the caller of the
current level, and so on, back to the level of the main program.

For example, the following code fragment prints the name of its caller, followed by
the source filename and line number of the call:

HELP, CALLS = A

;print 2nd el enent
PRINT, 'called from', A[1]

Thisresults in a message of the following form:
Called from DI ST </usr2/idl/lib/dist.pro (27)>

Programs can readily parse the traceback information to extract the source file name
and line number.

Obtaining Traceback Information Building IDL Applications

Chapter 17: Controlling Errors 425
Error Handling

IDL contains a system variable that is updated when errors occur. This system
variableis described below.

'ERROR_STATE

This system variable is a structure. Whenever an error occurs, IDL setsthefieldsin
this system variable according to the nature of the field. An IDL error is always
comprised of an IDL-generated component, and may also contain an operating
system-generated component.

Thefields for the 'ERROR_STATE system variable are described bel ow:

* NAME — A read-only string variable containing the error name of the IDL-
generated component of the last error message. Although the error code—as
defined below in CODE—may change between IDL sessions, the name will
always remain the same. If an error has not occurred in the current IDL
session, thisfield isset to IDL_M_SUCCESS.

* BLOCK — A read-only string variable containing the name of the message
block for the IDL-generated component of the last error message. If an error
has not occurred in the current IDL session, thisfield is set to
IDL_MBLK_CORE.

« CODE — Theerror code of the IDL-generated component of the last error in
IDL. Whenever an error occurs, IDL setsthis system variable to the error code
(anegative integer number) of the error. Although the error code may change
between IDL sessions, the name—as defined above in NAME—will always
remain the same. If an error has not occurred in the current IDL session, this
fieldissetto 0.

e SYS CODE — Theerror code of the operating system-generated component,
if it exists, of the last error. IDL sets this system variable to the OS-defined
error code. Thisfield is atwo-element longword array. If an error has not
occurred in the current IDL session, the array contains all zeros.

On most operating systems, the error codeis returned in the first element of the array
(i.e,, SYS_CODE[Q]) and the second element is set to 0. Some operating systems
(e.g., VMS) can return two separate error codes for some types of filesystem errors.
In these cases, SYS CODE[1] isalso set to an OS-defined error code.

e MSG — The error message of the IDL-generated component of the last error.
Whenever an error occurs, IDL setsthisfield to the error message (a scalar

Building IDL Applications Error Handling

426 Chapter 17: Controlling Errors

string) that corresponds to the error code. If an error has not occurred in the
current IDL session, thisfield is set to the null string, ' .

* SYS MSG — The error message of the operating system-generated
component, if it exists of the last error. When an operating system error occurs,
IDL setsthisfield to the OS-defined error message string. If an error has not
occurred in the current IDL session, thisfield is set to the null string, ' '.

« MSG_PREFIX — A string variable containing the prefix string used for the
IDL-generated component of error messages.

Using |[ERROR_STATE

At the beginning of an IDL session, |ERROR_STATE contains default information.
To see thisinformation, you can either view |ERROR_STATE from the System field
of the Variable Watch Window (see “The Variable Watch Window” on page 444) or
you can enter PRINT, 'ERROR_STATE at the Command Input Line. After an error
has occurred, all of the fields of 'ERROR_STATE display their updated status.

You can use MESSAGE, /RESET_ERROR STATE to reset al thefieldsin
IERROR_STATE to their default values.

Error Handling Building IDL Applications

Chapter 17: Controlling Errors 427
Math Errors

The detection of math errors, such as division by zero, overflow, and attempting to
take the logarithm of a negative number, is hardware and operating system
dependent. Some systems trap more errors than other systems. On systems that
implement the | EEE floating-point standard, IDL substitutes the special floating-
point values NaN and Infinity when it detects a floating point math error. (See
“Special Floating-Point Values’ on page 428.) Integer overflow and underflow is not
detected. Integer divide by zero is detected on al platforms.

A Note on Floating-Point Underflow Errors

Floating-point underflow errors occur when anon-zero result is so close to zero that
it cannot be expressed as a normalized floating-point number. In the vast majority of
cases, floating-point underflow errors are harmless and can be ignored. For more
information on floating-point numbers, see “Accuracy & Floating-Point Operations’
in Chapter 16 of the Using IDL manual.

Accumulated Math Error Status

IDL handles math errors by keeping an accumulated math error status. This status,
which isimplemented as alongword, contains a bit for each type of math error that is
detected by the hardware. When IDL automatically checks and clears this indicator
depends on the value of the system variable 'EXCEPT. The CHECK_MATH
function also allows you to check and clear the accumulated math error status when
desired.

IEXCEPT has three possible values:
IEXCEPT=0

Do not report exceptions.
IEXCEPT=1

The default. Report exceptions when the IDL interpreter returns to an interactive
prompt. Any math errors that occurred since the last interactive prompt (or cal to
CHECK_MATH) are printed in the IDL command log. A typical message looks like:

% Program caused arithmetic error: Floating divide by 0

Building IDL Applications Math Errors

428

Chapter 17: Controlling Errors

IEXCEPT=2

Report exceptions after each IDL statement is executed. This setting also allows IDL
to report on the program context in which the error occurred, along with the line
number in the procedure. A typical message looks like:

% Program caused arithnetic error: Floating divide by 0
% Detected at JUNK 3 junk.pro

Special Floating-Point Values

Math Errors

Machines which implement the |EEE standard for binary floating-point arithmetic
have two special values for undefined results: NaN (Not A Number) and Infinity.
Infinity results when aresult is larger than the largest representation. NaN isthe
result of an undefined computation such as zero divided by zero, taking the square-
root of a negative number, or the logarithm of a non-positive number. In many cases,
when IDL encounters the value NaN in adata set, it treatsit as “missing data” The
specia values NaN and Infinity are also accessible in the read-only system variable
IVALUES. These specia operands propagate throughout the eval uation process—the
result of any term involving these operands is one of these two special values. For
example:

;Multiply NaN by 3
PRI NT, 3 * I VALUES. F_NAN

IDL prints:
NaN

It isimportant to remember that the value NaN is literally not a number, and as such
cannot be compared with a number. For example, suppose you have an array that
contains the value NaN:

A =1[1.0, 2.0, !'VALUES. F_NAN]
PRI NT, A

IDL prints:
1. 00000 2.00000 NaN

If you try to select elements of this array by comparing them with a number (using
the WHERE function, for example), IDL will generate an error:

;Print the indices of the elements of A with a value greater than
;one.
PRI NT, WHERE(A GT 1.0)

Building IDL Applications

Chapter 17: Controlling Errors 429

IDL prints:

1
% Program caused arithrmetic error: Floating illegal operand

To avoid this problem, use the FINITE function to make sure arguments to be
compared arein fact valid floating-point numbers:

PRI NT, WHERE(FINITE(A) EQ 1)
IDL prints the indices of the finite elements of A:
0 1

To then print the indices of the elements of A that are both finite and greater than 1.0,
you could use the command:

PRI NT, WHERE(Al WHERE(FI Nl TE(A) EQ 1)] GT 1.0)
IDL prints:
1

Similarly, if you wanted to find out which elements of an array were not valid
floating-point numbers, you could use a command like:

;Print the indices of the elenents of A that are not valid
; fl oati ng-poi nt numbers.
PRI NT, WHERE(FI NI TE(A) EQ 0)

IDL prints:
2

Note that the special value Infinity can be compared to afloating point number. Thus,
if:

B=1[1.0, 2.0, !VALUES. F_INFIN TY]
PRI NT, B

IDL prints:

1. 00000 2. 00000 | nf
and

PRI NT, WHERE(B GT 1.0)
IDL prints:

1 2

Building IDL Applications Math Errors

430 Chapter 17: Controlling Errors

You can also compare numbers directly with the specia value Infinity:
PRI NT, WHERE(B EQ ! VALUES. F_I NFI NI TY)

IDL prints:
2

Note
On Windows and Solaris x86 platforms, using relational operators, such as EQ and
NE, with the values infinity or NaN (Not a Number) causes an “illegal operand”
error. The FINITE function’s INFINITY and NAN keywords can be used to
perform comparisons involving infinity and NaN values. For more information, see
“FINITE” on page 496.

The FINITE Function

Use the FINITE function to explicitly check the validity of floating-point or double-
precision operands on machines which use the | EEE floating-point standard. For
example, to check the result of the EXP function for validity, use the following
statement:

; Perform exponenti ati on.
A = EXP(EXPRESSI ON)

;Print error nessage.
I'F NOT FINITE(A) THEN PRI NT, 'Overflow occurred'

If A isan array, use the statement:
| F TOTAL(FI NI TE(A)) NE N_ELEMENTS(A) THEN

Integer Conversions

It must be stressed that when converting from floating to any of the integer types
(byte, signed or unsigned short integer, signed or unsigned longword integer, or
signed or unsigned 64-bit integer) if overflow isimportant, you must explicitly check
to be sure the operands are in range. Conversions to the above types from floating
point, double precision, complex, and string types do not check for overflow—they
simply convert the operand to the target integer type, discarding any significant bits
of information that do not fit.

When run on a Sun workstation, the program:

A=20"31+2
PRINT, LONG(A), LONG(-A), FIX(A), FIX(-A), BYTE(A), BYTE(-A)

Math Errors Building IDL Applications

Chapter 17: Controlling Errors 431

(which creates a floating-point number 2 larger than the largest positive longword
integer), prints the following:

2147483647 -2147483648 -1 0 255 0
% Program caused arithnmetic error: Floating illegal operand

Thisresult isincorrect.

Warning
No error message will appear if you attempt to convert afloating number whose
absolute value is between 21° and 23! - 1 to short integer even though the result is
incorrect. Similarly, converting a number in the range of 256 to 231 - 1 from
floating, complex, or double to byte type produces an incorrect result, but no error
message. Furthermore, integer overflow is usually not detected. Your programs
must guard explicitly against it.

Building IDL Applications Math Errors

432 Chapter 17: Controlling Errors

Math Errors Building IDL Applications

Chapter 18:

Debugging an IDL
Program

The following topics are covered in this chapter:

OVEIVIBW . o oo e 434 The Variable Watch Window 444
Debugging Commands 435

Building IDL Applications 433

434 Chapter 18: Debugging an IDL Program
Overview

There are several tools you can use to help you find errorsin your IDL code. The Run
menu item in the IDL Development Environment provides several ways to access
IDL’s built-in debugging and executive commands. The Variable Watch Window
helps you keep track of the variables used in your program.

This chapter explains the debugging commands and contains short examples using
the IDLDE interface to debug afile.

Overview Building IDL Applications

Chapter 18: Debugging an IDL Program 435
Debugging Commands

When afile displayed in an IDL editor window has been compiled (by selecting
Compile or Memory Compile from the Run menu, or by entering . COVPI LE,

. COWPI LE -f,or.RUNat the IDL command prompt), a number of debugging
commands become available for selection. For more information on the Run menu,
see the Using IDL manual.

When execution is interrupted, a current-line indicator is placed next to the line that
will be executed when processing resumes. The routine being compiled need not
aready be shown in an editor window. If aroutine compiled with the. RUN, . RNEW
or . COVPI LE executive commands contains an error, IDLDE will display thefile
automatically.

A Simple Example

A simple procedure, called BROKEN, has been included in the IDL distribution. An
error occurs when BROKEN is executed.

Start the IDLDE. Call the BROKEN procedure by entering:
BROKEN

at the IDL command line. An error is reported in the Output Log window and an
editor window containing the file BROKEN. PRO appears.

A “Variable is undefined” error has occurred. Since execution stopped at line 4, that
line is highlighted with an arrow.

Click on the Output Log window to see the error:

% Conpi | ed nodul e: BROKEN.
% PRI NT: Variable is undefined: |I.
% Execution halted at BROKEN 4
luser/ 1 ocal /rsi/idl 50/ exanpl es/ general / broken. pro
% $MAI N$

There are several ways of fixing this error. We could edit the program file to
explicitly define the variablei, or we could change the program so that it accepts a
parameter at the command line. We can also define the variable i on the fly and
continue execution of the program without making any changes to the program file.
We'll do thisfirst, then go back and edit the program to accept a command-line
parameter.

Building IDL Applications Debugging Commands

436 Chapter 18: Debugging an IDL Program

To definethevariablei and assigniit thevalue 10, click in the IDL command line and
enter:

i =10
Step Through the Program

Select Step I nto from the Run menu to execute line 4 with the new value of i and
step to the next program line.

The Output Log reports:
10
The current-line pointer advances to the next line in the window containing the file

BROKEN.PRO. You could continue stepping through the program by choosing Step
Into repeatedly (or by entering . STEP at the IDL command prompt).

The Trace Execution dialog offers an opportunity to automatically step through the
program. Select Trace... from the Run menu. The Trace Execution dialog appears.

Note

The Trace Execution dialog does not exist on Macintosh platforms. Selecting
Trace from the Run menu automatically steps through the program.

Trace Execution E |
T e]
: J |

Stop

Step eveny 1.0 zecond

% Step jnto routines
™ Step over rautines =

Figure 18-1: Trace Execution Dialog

Click Go to automatically issue the . STEP command until the END statement is
encountered, or click Stop to halt trace execution. Moving the slider in the Trace
Execution dialog controls the length of the pauses between step commands. You can
also select whether to step into routines, executing successive .STEP commands at

Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 437

each line, or to step over routines, issuing successive .STEPOVER commands. For
more information, see .STEP and .STEPOVER in the IDL Reference Guide. Click
OK to dismissthe diaog.

You can also continue execution of the program without stepping through. Select
Run from the Run menu, noting that the Output Log showsthat IDL callsbr oken.
Definethevariablei inthe Command Input Line. Select Run again. The Output Log
now showsthat IDL calls . CONTINUE. IDL prints the resulting output to the Output
Log window:

10
20
30
40

When stepping through amain program, if the next line calls another IDL procedure
or function, you have three options with which to handle execution of the nested
program. Selecting Step I nto executes statements in order by successive Step
commands. Selecting Step Over executes statements to the end of the called
function, without interactive capability. Select Step Out to continue processing until
the main program returns.

Fix the Program

To fix the program permanently, edit the first line of the program to read:
PRO BROKEN, i

Select Save from the File menu and Compile from the Run menu. IDL savesthe
modified text file over the old version and compiles the modified routine. To call this
new version of BROKEN with an input argument of 10, enter:

BROKEN, 10
The Output Log window prints the result:

10
20
30
40

Breakpoints

You can suspend execution of a program temporarily by setting breakpointsin the
code. Set abreakpoint at the fifth line of BROKEN.PRO by placing the cursor in the
line that reads:

PRI NT, i*2

Building IDL Applications Debugging Commands

438 Chapter 18: Debugging an IDL Program

and selecting Set Breakpoint from the Run menu. A breakpoint dot appears next to
the line. Now enter:

BROKEN, 10
The Output Log window displays the following:

10
% Br eakpoi nt at: BROKEN 5
user /|l ocal /rsi/idl 40/ exanpl es/ general / br oken. pro

and acurrent line indicator arrow marks line 5. Select Run to resume execution. To
list the breakpoints, enter HELP, / BREAKPO NT at the command line.

Setting a breakpoint allows you to inspect (or change) variable definitions as the
program executes. Since our example does not set any variables, setting a breakpoint
in BROKEN.PRO is not very informative. Breakpoints can be extremely helpful,
though, when debugging complex programs, or programs that call other routines. For
more information on working with breakpoints, see the following sections, Working
with Breakpoints on Windows/Matif Platforms, or “Working with Breakpoints on the
Macintosh Platform” on page 441.

Working with Breakpoints on Windows/Motif Platforms

You can select to edit, enable/disable, and change breakpoint properties using
Breakpoint Toolbar buttons. Additionally, through the Edit Breakpoints dialog,
breakpoints can be set for execution dependent upon a condition or enabled after the
breakpoint has been encountered a specific number of times.

The Breakpoint Toolbar Buttons
There are three buttons in the main menu bar. These are:

EI The Toggle Breakpoint button creates or deletes a breakpoint. Create a
breakpoint at the line where your cursor is positioned by clicking the
Toggle Breakpoint button. If a breakpoint already existsin the line where
your cursor is positioned, clicking this button removes the breakpoint.

EI The Enable/Disable Breakpoint button enables or disables a breakpoint.
If abreakpoint is enabled, afilled circle appears next to the linein the IDL
Editor window. If disabled, the circleis not filled. Disabled breakpoints
are ignored when you run thefile.

g The Edit Breakpoints button displays the Edit Breakpoints dialog. In
previous releases, this printed alisting of the current breakpoints. From
this dialog, you can list your current breakpoints, create new breakpoints,

Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 439
enable or disable breakpoints, change breakpoint options, or delete
breakpoints.

The Windows Edit Breakpoints Dialog

The Edit Breakpoints dialog allows you to add, remove, and remove all breakpoints
in afile aswell asthe ability to move to the line in the source file that contains the
breakpoint. The following figure shows the Edit Breakpoints diaog:

Edit Breakpoints [%]

E/D| Madule [Line | File [After [Ong| Candition |
o

Add Remove Remave Al Goto

Figure 18-2: Edit Breakpoints Dialog
To create a breakpoint using the Edit Breakpoints dialog, complete the following
steps:
1. Open thefile you in which you want to set a breakpoint.

2. Display the Edit Breakpoints dialog by clicking the ﬂ button in the
IDLDE Tool Bar or by selecting Run — Edit Breakpoints...

3. Placethe cursor in the line in which you want to create the breakpoint in the
Editor window.

4. Select Add inthe Edit Breakpoints dialog box. You will see a new entry
display in the dialog. The following table describes each property of a
breakpoint:

Building IDL Applications Debugging Commands

440 Chapter 18: Debugging an IDL Program

Item Description

E/D Specifies whether a breakpoint is enabled or disabled. If a
check mark is displayed, the breakpoint is enabled and
execution will stop when the all criteriafor the breakpoint is
met.

Module Specifies the procedure or function where the breakpoint is
Set.

Note - Thisitem will not be displayed until the file has been
compiled with the new breakpoint.

Line Specifies the line number where the breakpoint occurs.
File Specifies the filename where the breakpoint occurs.
After Specifies how many times the execution must pass the

breakpoint before stopping execution. For example, if this
item is set to 0, execution will stop the first time this
breakpoint is encountered. If it is set to 9, execution will not
stop until the breakpoint has been encountered for the ninth

time.

Once The breakpoint is removed after it is encountered for the first
time.

Condition Specifies a condition to be met for the execution to stop. The

condition isastring containing an IDL expression. When a
breakpoint is encountered, the expression is evaluated. If the
expression istrue (if it returns a non-zero value), program
execution isinterrupted. The expression is evaluated in the
context of the program containing the breakpaint.

Table 18-1: Edit Breakpoints Description

5. At thispoint, you can modify any of the items (except Module and Line) by
double-clicking in the entry.

Your breakpoint entry is now complete. When you run your program, execution is
halted at the breakpoints you have specified.

Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program 441

Working with Breakpoints on the Macintosh Platform

Breakpoints can be set and manipulated through the Run menu on Macintosh. From
this menu, you can perform the following actions:

Run Menu Item

Description

Set Breakpoint
Clear Breakpoint

Select Set Breakpoint to insert a breakpoint at the line
where your cursor is positioned. A red bullet, indicating an
enabled breakpoint, appears to the left of the line of code.
If abreakpoint already exists on thisline, this menu item
changesto Clear Breakpoint.

Disable Breakpoint
Enable Breakpoint

Select Disable Breakpoint to prevent the program from
being halted at aline with the selected breakpoint. A
disabled breakpoint appears as a gray bullet.

Select Enable Breakpoint to reactivate a breakpoint.

Edit Breakpoints...

Select Edit Breakpoints... to open the Edit Breakpoints
dialog through which you can modify multiple properties
of abreakpoint. See the The Macintosh Edit Breakpoints
Dialog for more information.

Clear All
Breakpoints

Select Clear All Breakpointsto remove al breakpoints
from the program and the Edit Breakpoints dialog.

List Breakpoints

Select List Breakpointsto list al current breakpointsin
the Output Log window. Each breakpoint’sindex and line
numbers are displays as well as the module and file name
in which the breakpoint occurs.

Table 18-2: Run Menu Breakpoint Selections

The Macintosh Edit Breakpoints Dialog

After placing breakpointsin your program, you can open the Edit Breakpoints
dialog by selecting Run - Edit Breakpoints... Through the Edit Breakpoints
dialog, shownin Figure 18-3, you can view and modify the properties of abreakpoint

as follows;

« Enable/Disable a Breakpoint — Click in the check mark field to enable or
disable abreakpoint. A checkmark indicates an enabled breakpoint. Disabled
breakpoints appear as «& gray bullets in the Editor window. Enabled
breakpoints with default properties appear as «# red bullets.

Building IDL Applications

Debugging Commands

442

Chapter 18: Debugging an IDL Program

View the M odule Containing the Breakpoint — The Module field specifies
the procedure or function where the breakpoint occurs. Thisitem will not be
displayed until the file has been compiled with the new breakpoint.

View or Alter the Breakpoint Line— The line number of each breakpoint is
displayed in the Linefield. You can alter the position of the breakpoint while
retaining its other properties. Click inthelinefield, change the number, and hit
return.

View the File Containing the Breakpoint — The File field specifiesthefile
where the breakpoint occurs.

Control when the Breakpoint is Enabled — The Break After filed allows
you to specify how many times the execution must pass the breakpoint before
the breakpoint stops execution. Click in the Break After field, enter anumber
and hit return to set how many times the breakpoint is passed before being
enabled. For example, if you enter 7 in thisfield, execution will stop when the
breakpoint is encountered the seventh time. Breakpoints with a Break After
value appear as . blue bullets in the Editor window.

Remove a Breakpoint After it is Encountered Once — Click the Break
Oncefield to toggle between yes, to remove the breakpoint after asingle
execution, or no, to keep the breakpoint enabled. Breakpoints that are to be
removed after a single encounter appear as . yellow bullets in the Editor
window.

Set the Conditional Execution of a Breakpoint — To enable a breakpoint
only if it meets a certain condition, click in the Condition field and enter a
string containing an IDL expression. When a breakpoint is encountered, the
expression isevaluated. If the expressionistrue (if it returns anon-zero value),
program execution is interrupted. The expression is evaluated in the context of
the program containing the breakpoint. Breakpoints associated with a
condition appear as & green bullets in the Editor window.

Debugging Commands Building IDL Applications

Chapter 18: Debugging an IDL Program

443

* Remove a Breakpoint — To remove a breakpoint through the Edit
Breakpoints dialog, highlight the line containing the breakpoint and press the
delete key.

demo_draw.pro

L

3
pro demo_draw, olindow, oView, debug=debug

H
;Procedure DEMO_DRAM: call olindow->0raw, ofiew
swrapping the call in lexcept=8 if not DEBUG.

H
i10n some platforms, when |DLgrHindow::Drow is invoked, math errors
;ie.g. "¥ Program caused arithmetic error: Floating illegal
joperand" } are printed. DEMO_DRAM exists to supress the printing of
i these errors.

H

sFlush and print any gecumulated math errors

H

void = check_math{ /print}

H
15ilently accumulate any subsequent math errors, unless we are debugging.

H
orig_except = lexcept
lexcept = {[8, 2]}[keyword set{debug}]

H

H =

H

olindow=>*0raw, oVisw

H
;Silently {unless we are debugging} flush any accumulated math errors.

Edit Breakpoints

+ Module Line Filename Break After Break Once Condition

-+ File Mot Compiled 6 Speedy RSI:IDL 5... rc demo_draw .pro Every Time yes

-+ File Mot Compiled (18 Speedy RSI:IDL 5... rc demo_draw .pro 10 Times no

-+ File Mot Compiled |22 Speedy RSI:IDL 5... rc demo_draw .pro Every Time no orig_except=0 2]
-+ File Mot Compiled |27 Speedy RSI:IDL 5... rc demo_draw .pro Every Time no

Figure 18-3: Breakpoints and the Edit Breakpoints Window

Building IDL Applications

Debugging Commands

444 Chapter 18: Debugging an IDL Program
The Variable Watch Window

The Variable Watch window displays current variable values after IDL has compl eted
execution. If the calling context changes during execution — as when stepping into a
procedure or function — the variable table is replaced with a table appropriate to the
new context. While IDL is at the main program level, the Watch window remains
active and displays any variables created.

Name Type Yalue Ay
BA FLOAT Arrayl2, 3] J
«|[0,1] FLOAT |5.000000
i
Localsl F'ar“amsl EDmmDnsl Sgsteml

Figure 18-4: Variable Watch Window

Customizing Variable Watch Window Layout

To hide the Variable Watch window, select Window — Hide Variable Watch. Select
Show Variable Watch to make it reappear. Changing the Window menu will only
affect the current IDL session.

To apply your changes to future sessions, select File —» Preferences and click the
L ayout tab. In the section labeled Show Windows, select or clear check boxes
associated with the windows you want to appear. Click Apply to save your changes
for future IDL sessions and OK to exit.

Note
Selection or clearing of Window menu items reflects changes in the L ayout
preferences and vice versa.

The Variable Watch Interface Description

The Variable Watch window is refreshed after the IDLDE has completed execution.
Each Variable Watch window contains the following folders:

The Variable Watch Window Building IDL Applications

Chapter 18: Debugging an IDL Program 445

Locals

Thistab contains descriptions of local variables. Local variables are created
from IDL’s main program level. For example, entering a=1 at the Command
Input Line lists the integer a in the Locals tab.

Params

Thistab contains descriptions of parameters. The variables and expressions
passed to afunction or procedure are parameters. For more information, see
“Parameters’ on page 296.

Commons

Thistab contains descriptions of variables contained in common blocks. The
name of each common block is shown in parentheses next to the variable
contained within it. For more information, see “ Common Blocks’ on page 56.

System

This tab contains descriptions of system variables. System variables are a
special class of predefined variables available to al program units. For more
information about system variables, see Appendix D, “ System Variables’ in
the IDL Reference Guide.

Each tab contains atable listing the attributes of the variablesincluded in the
category. You can size the columns by clicking on the line to the right of the title of
the column you wish to expand or shrink. Drag the mouse either |eft or right until you
are satisfied with the width of the column. For example, to change the width of the
Name column, click and drag on the line separating the Name field from the Type

field.

The following fields describe variabl e attributes:

Name

This field shows the name of the variable. Thisfield is read-only, except for
array subscript descriptions (see examplein Using the Variable Watch Window
below).

For compound variables such as arrays, structures, pointers, and objects, click
the“+” symbol to the left of the name to show the variables included in the
compound variable. Click the “-" symbal to collapse the description.

Type

Thisfield shows the type of the variable. Thisfield is read-only.

Building IDL Applications The Variable Watch Window

446 Chapter 18: Debugging an IDL Program

« Vaue

Thisfield shows the value of the variable. To edit avaluein UNIX, highlight
the cell by clicking on it, press the function key F2 to enter editing mode, and
enter the new value. To edit a value in Windows, double click on the cell to

highlight it and enter the new value. To edit avalue on Macintosh, click on the
cell.

The Name, Type, and Vaue fields are displayed as when using the HEL P procedure.
For more information about variables, see “Variables’ on page 52.

The Variable Watch Window and Objects

Object references are expanded only if they reference non-null objects. Object data
are expanded only if the object method has finished running. Object data are read-
only and cannot be changed with the Variable Watch window.

Using the Variable Watch Window

Arrays are expanded to show one array element. Click on the “+” symbol next the
name of the array to display theinitial array subscript. You can change thisfield to
display the characteristics of any other array element.

Note

To enter editing mode in Matif, press F2 after clicking on the cell to be edited. In
Windows, double click on the cell. On the Macintosh, click on the cell.

To edit the subscript, highlight the cell by clicking on it, and modify the name using
the arrow keys to maneuver. For example, enter the following:

;Create an array with 2 colums and 3 rows.
A=MAKE_ARRAY(2, 3)

; Show t he values of array A in the Qutput Log. They will all be
;zero.
PRI NT, A

;Assign the value of 5 to the value in the array subscripted as 2.
;This is the same as entering A(O, 1) =5.
A(2)=5

; Show t he new val ues of array A
PRI NT, A

The Variable Watch Window Building IDL Applications

Chapter 18: Debugging an IDL Program 447

IDL prints:
0. 00000 0. 00000
5. 00000 0. 00000
0. 00000 0. 00000

It is easy to manipulate variables within the Watch window. Click on the “+”
expansion symbol next to the array A. The subscript [0,0] will be revealed beneath
the description of A. Enter editing mode and change [0,0] to [0,1].

Note

To enter editing mode in Motif, press F2 after clicking on the cell to be edited. In
Windows, double click on the cell. On the Macintosh, click on the cell.

Press Enter to effect the change. Notice that the value of the subscript is displayed as
5, asyou entered from the command line. Press the Tab key to highlight the val ue of
the subscript [0,1]. You can change it to another number. Enter [1,0] in the subscript

name field. You can also change the value from 0.00000 to another number.

For more information about arrays, see Chapter 5, “Arrays’.

Building IDL Applications The Variable Watch Window

448 Chapter 18: Debugging an IDL Program

The Variable Watch Window Building IDL Applications

Chapter 19:

Extending the IDL
Online Help System

The following topics are covered in this chapter:

OvErvIeW . ..o 450 Accessing OnlineHelpfromIDL 454
Online Help Viewers Included with IDL . 451 Alternativesto Traditional Help Systems . 458

Building IDL Applications 449

450 Chapter 19: Extending the IDL Online Help System

Overview

IDL givesyou the ability to call traditional Help files that you have created for your
applications, routines, etc. The online help system used by IDL emulates (or uses, in
the case of IDL for Windows) the Microsoft Windows Help viewer on all supported
platforms. Because the online help files are compiled, thereis not a simple, no-cost
way to include user-created help topics directly in the help system on al platforms.
However, there are anumber of ways to create your own help system.

The techniques described in this section vary in complexity, cost, and level of
integration with the online Help viewers included with IDL. The options covered in
this chapter include:

» Displaying online help files such as those used by IDL.

» Creating text widgets to display small amounts of help information within an
application.

» Displaying HTML files or text files using the SPAWN command.
» Displaying text files with the XDISPAY FILE procedure.

Overview Building IDL Applications

Chapter 19: Extending the IDL Online Help System 451
Online Help Viewers Included with IDL

The online Help system used by IDL emulates (or uses, in the case of IDL for
Windows) the Microsoft Windows Help viewer on all supported platforms. It is
possible to create your own online help files that can be used with the viewer. The
difficulty and expense involved in creating such files depends largely on the
platform(s) involved.

Whileit can be expensive to create a help system, such a system offers users the
greatest access to your help information. Online help includes the ability to navigate
through files, search specific topics and generate indices.

Additionally, IDL is aready distributed with the functionality needed to read the
following types of online help files:

* Windows
WinHep
« HTML Help
* Macintosh

* AlturaQuickHelp
* UNIX andVMS
* Bristol HyperHelp

See the following platform specific sections for more information.
Microsoft Windows

For Microsoft Windows systems, help files are relatively easy to create. Files must be
created in the Rich Text Format (RTF) and compiled with Microsoft’s help compiler,
Windows Help Workshop. The help compiler is part of the Windows Software
Developer’s Kit, and is now included in several Microsoft programming products,
including the Visual C++ development environment. The help compiler may also be
available from the Microsoft ftp site (ftp.microsoft.com) or other Microsoft online
software libraries at little or no cost.

The Windows help system is often referred to as “WinHelp”. The two components
are the viewer (W NHELP. EXE, found in the main WINDOWS directory of all
Windows systems), and the help compiler, Windows Help Workshop. There are a
number of third-party “help authoring systems” that simplify the creation of WinHelp
compatible RTF files. Also, a number of third party books describe the WinHelp

Building IDL Applications Online Help Viewers Included with IDL

452 Chapter 19: Extending the IDL Online Help System

creation process—Devel oping Online Help for Windows, by Scott Boggan, David
Farkas, and Joe Welinske, Sams Publishing, 1993, ISBN: 0-672-30230-6 is one that
we have found useful.

Macintosh

For Macintosh, IDL uses a WinHel p-compatible compiler and viewer licensed from
Altura Software, Inc. called QuickHelp. This compiler uses the same RTF (Rich Text
Format) files as those used by the Microsoft Help compiler. Altura Software can be
contacted at the following address:

Altura Software, Inc.

510 Lighthouse Avenue, Suite 5
Pacific Grove, CA 93950
Phone: (831) 655-8005

Fax: (831) 655-9663

WWW: http://www.altura.com

UNIX and VMS

For UNIX and VMS online help, we use a compiler and viewer from Bristol
Technology, Inc. called HyperHelp. Bristol makes a number of compilers that can
compile avariety of source files including the following:

* RTF (Rich Text Format) files.

» FrameMaker's MIF (Maker Interchange Format) files.
 SGML (Standard Generalized Markup Language) files.
* HTML (Hypertext Markup Language) files.

» Bristol’'sown simple HyperHelp Text (HHT) files.

We use the MIF compiler to create online help files from the same FrameMaker files
that produce our hardcopy manuals.

Bristol also makes a product called Bridge that takes compiled HyperHelp files and
converts them to RTF files that can be compiled with the Windows and Macintosh
help compilers described above. In thisway, we can create help filesfor all supported
IDL platforms from a single source.

Bristol Technology can be contacted at the following address:

Bristol Technology, Inc.
39 Old Ridgebury Road

Online Help Viewers Included with IDL Building IDL Applications

Chapter 19: Extending the IDL Online Help System 453

Danbury, CT 06810-5113 USA
Phone: (203) 798-1007

Fax: (203) 798-1008

E-mail: info@bristol.com
WWW: http://www.bristol.com

Building IDL Applications Online Help Viewers Included with IDL

mailto:info@bristol.com
http://www.bristol.com

454 Chapter 19: Extending the IDL Online Help System
Accessing Online Help from IDL

The IDL ONLINE_HELP procedure can be used in your IDL program to display
help (.hIp) files and control the viewer. This command can be used from the IDL
command line or included in the event handler of awidget. You can store help filesin
the hel p directory of the IDL distribution, or you can specify a path for your help
files.

Accessing a Help File with ONLINE_HELP

To access a Help file, use the ONLINE_HELP command at the IDL command line.
The ONLINE_HELP syntax is asfollows:

ONLINE_HELP[, Value] [, BOOK="filename'] [, /CONTEXT] [, /FULL_PATH]
[,/[HTML_HELP] [, /QUIT] [, /TOPICS]

For example, to open the IDL Online Help file, namedi dl . hl p, enter the following
at the IDL command line:

ONLI NE_HELP, BOOK='idl"'

The BOOK="filename’ keyword does not require you to enter the . hl p extension,
and does not require that the full path of the file be specified if it is stored in the IDL
hel p directory. If you have created help files and saved them in a directory other than
the default help directory for IDL, you can specify the path to your help file directory
from within the ONLINE_HEL P command using the /FULL_PATH keyword. For
example, if your help file, called myhel p. hl p, existsin adirectory called myapp in
the IDL distribution, the files can be access with the following command:

ONLI NE_HELP, BOOK=" C:\ RSI\ | DL54\ nyapp\ nyhel p’, /FULL_PATH
See ONLINE_HELPinthe IDL Reference Guide for details.

You can call this routine from amenu item, a button on a dialog, or from the
command line. To build help functionary into an application, you can create ahelp
button or a help menu item. See the following section, Creating a Simple Help
Button, for more information.

Creating Context Sensitive Help Files

When a user selects “Help” from your application, you can display online help
information relating to a specific dialog or interface, thus creating “ context sensitive”
help. You can create context sensitive online help by first mapping topics in your
hyperhelp project (.hpj) file. Using the MAP section of the help project, you can

Accessing Online Help from IDL Building IDL Applications

Chapter 19: Extending the IDL Online Help System 455

define avalue associated with a help topic. The following example shows the MAP
section for the IDL license wizard. Note that each topic is defined by a short string
and an unigue value. See your online help documentation for complete details. The
online help files can then be easily incorporated into your application by using the
IDL ONLINE_HELP command.

[MAP]

lwlic wz 0100
lw eval lic 0200
Iw eval lic _finish 0300
I w_perman_lic 0400
lw_enter_permlic 0500
lw_finish_permlic 0600
lw req_lic 0700
I w_di splay_req 0800
| w_prepare_eni | 0900
Iw finish_lic_req 1000

For more information on using the ONLINE_HEL P command, see the following
section, Accessing Online Help from IDL. To explore alternatives to creating online
help, see “Alternatives to Traditional Help Systems” on page 458 for more
information.

Accessing a Context Sensitive Online Help File

Using the CONTEXT keyword of ONLINE_HELP, you can associated a specific
help file topic with amap value. In IDL for instance, the main navigation page of the
IDL Online Help system was mapped to the value 00001. This help dialog can be
opened using the following syntax:

ONLI NE_HELP, 00001, /CONTEXT, BOOK ='idl"’

Once you've created your online help file, and defined the map values, as briefly
described in “ Creating Context Sensitive Help Files’ on page 454, the topics can be
accessed in avariety of ways. The following example shows using a help button to
display a specific online help topic.

Creating a Simple Help Button

You can easily create and display a help file by configuring the event handler of a
simple button widget. Regardless of what method you choose to create your help
information, this allows users to access context sensitive help. The following
program displays a Help button that when clicked, displays a Help system.

;++++BEG N: Event Routines++++
; ++Hel p Button Event:

Building IDL Applications Accessing Online Help from IDL

456 Chapter 19: Extending the IDL Online Help System

PRO OnPress, event

; Open the context sensitive help file.
ONLI NE_HELP, BOOK = "idl', /TOPICS

END
i +++++END: Event Routi nes+++++

;++++BEGA N GUl Routi nes++++
PRO hel pbutton

; Create top-Ilevel -base (background base).
base = W DGET_BASE(/ COLUWN, XSIZE = 250, $
TITLE = ' Sanpl e Hel p Button')
; Create base to contain and center Help button.
This base is contained within the top-I|evel-base.
butt onBase = W DGET_BASE(base, /RON $
/ AL GN_CENTER)
; Create Help button. This button is contained
;. within the button base, which is contai ned
; within the top-Ievel-base.
button = W DGET_BUTTON(butt onBase, VALUE = 'Help', $
EVENT_PRO = ' OnPress')
; Display GUI.
W DGET_CONTROL, base, /REALIZE
;. Handl e events.
XMANAGER, ' hel pbutton', base

END
; +++++END: GUI Rout i nes+++++

In the running application, press the Help button to display the online help file you
have associated with this button press event.

&#]|Sample Help Button [_ (O] x|
Help |

Figure 19-1: Sample Help Button

The procedure would be similar for a help menu item. For more information on
creating and customizing widgets see Chapter 22, “Widgets’ or see Chapter 21,
“Using the IDL GUIBuilder” for information on creating widgets through the IDL
GUIBuilder.

Accessing Online Help from IDL Building IDL Applications

Chapter 19: Extending the IDL Online Help System 457

Paths for Help Files

You can specify the paths for your help fileswith 'HELP_PATH. This system
variable defines the directories IDL will search for online help files. The default
directory isthehel p subdirectory of themain IDL directory. To change the directory,
set the IDL_HELP_PATH environment variable using one of the following
procedures:

e For UNIX, setthe IDL_HELP_PATH environment variable.
e For VMS, set the IDL_HELP_PATH logical name.

* For Windows, specify the system variable for the help path. See DEFSYSV in
the IDL Reference Guide for more information.

* For Macintosh, specify the system variablefor the help path. See DEFSY SV in
the IDL Reference Guide for more information.

You can also expand the directoriesthat IDL will search for help files using path
expansion. See EXPAND_PATH in the IDL Reference Guide for more information.

Building IDL Applications Accessing Online Help from IDL

458 Chapter 19: Extending the IDL Online Help System
Alternatives to Traditional Help Systems

Since IDL is aprogramming language, there are many ways of creating a Help
system for your users. Some options include:

» Displaying help information in atext widget.

» Using SPAWN to display HTML pagesin a Web browser

» Using SPAWN to display ASCII text filesin any text editor

e Using XDISPLAYFILE and an IDL Text Widget to display an ASCI| text file.

Creating a Text Widget to Display Help Text

By associating the event of a button with atext widget, you can easily display small
amounts of help information within a application interface. To display larger text
files, consider using the XDISPLAY FILE procedure as described in “Displaying a
Text Help File Using XDISPLAY FILE” on page 460.

The following program displays help text within an application:

;++++BEG N Event Routines++++
; ++Hel p Button Event
PRO OnPress, event

Get the widget ID of the text widget.
text! D = WDGET_I NFQ(event.top, $
FI ND_BY_UNAME = 'wi dgettext')

Define the nmessage to be displayed in the text

;Wi dget.

W DCET_CONTRCOL, textID, SET_VALUE = 'This is an' + $
"exanple of using a text widget to display ' + $
"hel p information'

END
i +++++END. Event Routi nes+++++

;++++BEA N: QU Routi nes++++
PRO hel pbut t onandt ext

Create top-I|evel -base (background base).
base = W DGET_BASE(/ COLUW, XSIZE = 250, $
TITLE = ' Sanpl e Hel p Button')
Create base to contain and center Help button.
; This base is contained within the top-I|evel-base.

Alternatives to Traditional Help Systems Building IDL Applications

Chapter 19: Extending the IDL Online Help System 459

buttonBase = W DGET_BASE(base, /RON $
/ ALl GN_CENTER)
Create Help button. This button is contained
within the button base, which is contained
; Within the top-Ievel -base.
button = W DCGET_BUTTON(butt onBase, VALUE = 'Help', $
EVENT_PRO = ' OnPress')
Create text widget. This text wi dget is
; contained within the top-Ievel -base.
text = WDGET_TEXT(base, /SCROLL, /WRAP, $
YSIZE = 3, UNAME = 'widgettext')
; Display GU.
W DGET_CONTROL, base, /REALIZE
;. Handl e events.
XMANAGER, ' hel pbutton', base

END
; +++++END: GUI Routi nes+++++

When running this example, click the Help button to display the sample text.:

& 5 ample Help Button M=l E3

Help |

Thiz iz an example of uzing a kext widget to ;I
dizplay help information

]

Figure 19-2: Sample Help Button to Display Text

Displaying HTML or Text Help Files Using SPAWN

Another alternative to creating online help isto create your help filesusing HTML
files. The HTML files can be displayed in a designated Web browser, and called from
your application using the SPAWN procedure. You can easily incorporate thisinto an
application by placing the SPAWN command into the event handler of a help button
or help menu item.

For example, the following SPAWN command executed on a Windows platform
would look like the following:

SPAWN, "c:\program fil es\netscape\comuni cat or\ program
\netscape.exe ny_file_path.htn, /NOSHELL, /NOMI T

Building IDL Applications Alternatives to Traditional Help Systems

460

Chapter 19: Extending the IDL Online Help System

whereny_fil e_pat h. ht m isthe path and filename of the HTML file you want to
open.

If you have stored your HTML filesin adirectory called nyhel p inthelDL 5.4
directory, the path would be as follows:

SPAWN, "c:\program fil es\netscape\comruni cat or\ program
\ net scape. exe c:\rsi\idl 54\ myhel p\ hel p. ht nf', / NOSHELL,
/ NOWAI T

To use the SPAWN procedure to read atext or HTML help file, you must specify the
path of the application that will be used to open the file as well asthe path of thefile
to be opened. Therefore, the SPAWN option may be most useful for in-house help
file applications. For more information, see SPAWN in the IDL Reference Guide.

Another HTML option isto use the MK_HTML_HEL P procedure to create HTML -
formatted documentation from standard IDL documentation headers. These files can
then be viewed with aweb browser. See MK_HTML_HELP in the IDL Reference
Guidefor details.

Displaying a Text Help File Using XDISPLAYFILE

The IDL XDISPLAY FILE procedure displays an ASCI| text file using a predefined
widget interface. For example, enter the following statement at the IDL command
prompt:

XDl SPLAYFI LE, 'relnotes.txt'
You can create text files of your help information and display them by inserting the
XDISPLAY FILE procedure into the event handler of a button or menu item. If you

store your text filesin the IDL directory, you do not need to specify the entire path of
thetext file. See XDISPLAY FILE in the IDL Reference Guide for more details.

Alternatives to Traditional Help Systems Building IDL Applications

Part IV: Using IDL
Objects

Chapter 20:

Object Basics

The following topics are covered in this chapter:

Object-Oriented Programming 464
IDL Object Overview 465
ClassStructuresoovvun.s. 467
Inheritance 469
Object Heap Variables................ 471
Null Objects 473

Building IDL Applications

The Object Lifecycle 474
Operationson Objects a77
Obtaining Information about Objects 479
Method Routines 481
Method Overriding 485
Object Examples 488

463

464 Chapter 20: Object Basics

Object-Oriented Programming

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functionsin the case of IDL)
and data to be acted upon by the routines. Object oriented programming begins to
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides alayer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for devel oping object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users’) computer platform, output devices,
etc. Asan IDL programmer, you can use IDL’s traditional procedures and functions
aswell asthe new object featuresto create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to use object techniqueswith IDL. A complete discussion
of object orientation is beyond the scope of this book—if you are new to object
oriented programming, consult one of the many references on object oriented
program that are available.

Object-Oriented Programming Building IDL Applications

Chapter 20: Object Basics 465
IDL Object Overview

IDL objects are actually specia heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variablesin general are discussed in detail in “Heap Variables’ on
page 121.

Briefly, IDL provides support for the following object concepts and mechanisms:
Classes and Instances

IDL objects are created asinstances of aclass, which isdefined in the form of an IDL
structure. The name of the structureis also the class namefor the object. The instance
data of an object isan IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “ Class Structures’ on
page 467.

Encapsulation

Encapsulation isthe ability to combine dataand the routines that affect the datainto a
single object. IDL accomplishes this by only allowing access to an object’s instance

dataviathat object’s methods. Data contained in an object is hidden from all but the

object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Method Routines” on page 481.

Polymorphism

Polymorphismis the ability to create multiple object types that support the same
operations. For example, many of 1DL’s graphics objects support an operation called
“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing
it to afile. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.

Building IDL Applications IDL Object Overview

466

Chapter 20: Object Basics

Inheritance

Inheritance is the ability of an object class to inherit the behavior of other object
classes. This means that when writing a new object class that is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritanceis
discussed in detail in “Inheritance” on page 469.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to alter their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an imagefile, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.

IDL Object Overview Building IDL Applications

Chapter 20: Object Basics 467
Class Structures

Object instance datais contained in named IDL structures. We will use the term class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the classitself, and thus servesto
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { dassl, datal:OL, data2: FLTARR(10) }

any objects created from the class structure Cl ass1 would have the same two fields
(dat a1, along integer, and dat a2, aten-element floating-point array) and any
methods associated with the class would have the name Classl::method, where
method is the actual name of the method routine. Methods are discussed in detail in
“Method Routines” on page 481.

Note
When a new instance of a structureis created from an existing named structure, all
of the fieldsin the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only atemplate for that type of data. This
istrue of objects aswell; anewly created object will contain a zeroed copy of the
class structure as its instance data.

It isimportant to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed viathe returned
object reference. In addition, object methods can only be called on object, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure already exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.

Building IDL Applications Class Structures

468 Chapter 20: Object Basics

Automatic Class Structure Definition

If IDL finds areference to a structure that has not been defined, it will search for a
structure definition procedure to defineit. (Thisistrue of al structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 114. Briefly, if IDL encounters astructure reference for
astructure type that has not been defined, it searches for aroutine with a name of the
form

STRUCT __ DEFI NE

where STRUCT isthe name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFI NE
struct = { CNAME, datal:OL, data2: FLTARR(10) }
END

This defines a structure named CNAME with 2 datafields (dat al, along integer,
and dat a2, aten-element floating-point array). If you tell IDL to create an object of
type CNAME before this structure has been defined, IDL will search for the
procedure CNAME__DEFINE to define the class structure before attempting to
create the object. If the CNAME__DEFINE procedure has not yet been compiled,
IDL will useits normal routine searching algorithm to attempt to find a file named
CNAME__DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility exists that you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a problem if
you are devel oping object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients' systems. You can
avoid most problems by creating a unique namespace for your routines, Research
Systems does this by prefixing the names of objects with the letters“IDL”. To be
completely sure that the objects created by your programs are what you expect,
however, you should have the program inspect the created structures and handle
errors appropriately.

Class Structures Building IDL Applications

Chapter 20: Object Basics 469
Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” asfollows:

struct = { circle, x:0, y:0, radius:0 }
we can define a subclass of the “circle’ classlike this:
struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is aclass structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 100.

When aclass structure inherits from another class structure, it is said to be a subclass
of the classit inherits from. Similarly, the class that is inherited fromis called a
superclass of the new class. Defining a subclass of an existing class in this manner
has two consequences. First, the class structure for the subclass is constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structureisthat when an object is created from the subclass structure, that object
inherits the methods of the superclass aswell asits datafields. That is, if an object of
the superclass type has a method, that method is avail able to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of typefilled circle will also have accessto
the Print method defined for circle.

IDL alows multiple inheritance. This means that you can include the INHERITS
specifier as many times as you desire in a structure definition, aslong as all of the
resulting data fields have unique names. Data fields must have unigque names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the

Building IDL Applications Inheritance

470

Inheritance

Chapter 20: Object Basics

structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.

Note
The requirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 485 for details.

If astructure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 468.

Building IDL Applications

Chapter 20: Object Basics 471
Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it isimportant to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ NEW and
OBJARR functions. For more information on heap variables and pointers, see“IDL
Pointers” on page 126.

Heap variables are aspecial class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called object heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It isimportant to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using alightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
agiven program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:
» Facilitate object oriented programming.

» Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved aswell. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.

Building IDL Applications Object Heap Variables

472

Chapter 20: Object Basics

« Aremanipulated primarily via pointers or object references using built in
language operators rather than specia functions and procedures.

» Can be used to construct arbitrary, fully general data structuresin conjunction
with pointers.

Dangling References

If aheap variableis destroyed, any remaining pointer variable or object reference that
still refersto it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best optionisto
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (viathe
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many referencesto a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to |ose access to them and the memory they are using.

See “Heap Variables” on page 121 for additional details.

Object Heap Variables Building IDL Applications

Chapter 20: Object Basics 473
Null Objects

The Null Object is aspecia object reference that is guaranteed to never point at a
valid object heap variable. It isused by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates anull object:

nul | obj = OBJ_NEW)

Building IDL Applications Null Objects

474 Chapter 20: Object Basics

The Object Lifecycle

As discussed above, objects are persistent, meaning they exist in memory until you
destroy them. We can break the life of an object into three phases: creation and
initialization, use, and destruction. Object lifecycle routines allow the creation and
destruction of object references; lifecycle methods associated with an object allow
you to control what happens when an object is created or destroyed.

This section will discussthefirst and last phases of the abject lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines.

Creation and Initialization

Object references are created using one of two lifecycle routines; OBJ NEW or
OBJARR. Newly created objects are initialized upon creation in two ways.

1. Theobject referenceis created based on the class structure specified,

2. Theobject’sINIT method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an INIT method, the object’s superclasses (if any) are searched
for an INIT method.

The INIT Method

An object’s lifecycle method INIT is afunction named Class:: INIT (where Classis
the actual name of the class). The purpose of the INIT method is to populate a newly-
created object with instance data. INIT should return ascalar TRUE value (such as 1)
if theinitialization is successful, and FAL SE (such as Q) if theinitialization fails.

The INIT method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the INIT
method on an object directly. You can, however, call an abject’s INIT method from
within the INIT method of a subclass of that object. This allows you to specify
parameters used by the superclass' INIT method along with those used by the INIT
method of the object being created. In practice, thisis often done using the EXTRA
keyword. See"Keyword Inheritance” on page 301 for details.

The OBJ_NEW Function

Use the OBJ_NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ NEW
creates a new object containing an instance of that class structure. Note that the fields

The Object Lifecycle Building IDL Applications

Chapter 20: Object Basics 475

of the newly-created object’s instance data structure will all be empty. For example,
the command:

obj1 = OBJ_NEW' Cd assNane')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variablein obj 1. If you do
not supply an argument, the newly-created object will be anull object.

When creating an object from a class structure, OBJ NEW goes through the
following steps.

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 468 for details. If the structure is still not defined,
OBJ NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ NEW looks for a
method function named Class::INIT (where Class is the actual name of the
class). If an INIT method exists, it is called with the new object asitsimplicit
SELF argument, aswell as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no INIT method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Method Routines’ on page 481.

Note
OBJ NEW does not call all the INIT methods in an object’s class hierarchy.
Instead, it smply calls the first oneit finds. Therefore, the INIT method for a class
should call the INIT methods of its direct superclasses as necessary.

4. If the INIT method returnstrue, or if no INIT method exists, OBJ NEW
returns an object reference to the heap variable. If INIT returns false,
OBJ _NEW destroys the new object and returns the NULL object reference,
indicating that the operation failed. Note that in this case the CLEANUP
method is not called.

See OBJ NEW in the IDL Reference Guide for further details.
The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,

Building IDL Applications The Object Lifecycle

476

Chapter 20: Object Basics

the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj 2 = OBJARR(3, 3)
See OBJARR in the IDL Reference Guide for further details.

Destruction

Use the OBJ _DESTROY procedure to destroy an object. If the object’s class, or one
of its superclasses, supplies a procedure method named CLEANUR, that method is
called, and all arguments and keywords passed by the user are passed to it. The
CLEANUP method should perform any required cleanup on the object and return.
Whether a CLEANUP method actually exists or not, IDL will destroy the heap
variable representing the object and return.

The CLEANUP method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the CLEANUP method on an object directly. You can, however, call an object’s
CLEANUP method from within the CLEANUP method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “ Dangling References” on page 133.

See OBJ DESTROY inthe IDL Reference Guide for further details.

The Object Lifecycle Building IDL Applications

Chapter 20: Object Basics 477
Operations on Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation, EQ, and NE. In addition, the structure dot operator (.) is alowed
within methods of a class. The remaining operators (addition, subtraction, etc.) do not
make any sense for object references and are not defined.

Many non-computational functions and proceduresin IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It isworth
noting that the only 1/0 allowed directly on object reference variablesis default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. Thisis merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/0O on the contents of non-object
instance data contained in heap variablesis not allowed. Passing non-object instance
data contained in an object heap variableto the PRINT command is asimple example
of thistype of 1/0.

Assignment

Assignment works in the expected manner—assigning an object referenceto a
variable gives you another variable with the same reference. Hence, after executing
the statements:

:Define a class structure.
struct = { cnane, datal:0.0 }

; Create an object.
A = OBJ_NEW' chane')

;Create a second object reference.

B=A
HELP, A B
IDL prints:
A OBJREF = <(nj HeapVar 1(CNAME) >
B OBJREF = <nj HeapVar 1(CNAME) >

Building IDL Applications Operations on Objects

478

Chapter 20: Object Basics

Note that both A and B are references to the same object heap variable.

Method Invocation

In order to perform an action on an object’s instance data, you must call one of the
object’smethods. (See“Method Routines’ on page 481 for more on methods.) To call
amethod, you must use the method invocation operator, - > (the hyphen followed by
the greater-than sign). The syntax is:

ObjRef -> Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially

(using only the method name) or completely using both the class name and method

name, connected with two colons:

ObjRef -> Class:: Method

Equality and Inequality

The EQ and NE operators allow you to compare object references to seeif they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cnanme, data:O0.0}

;Create an object.
A = OBJ_NEW' CNAME')

;B refers to the sanme object as A

B=A

;C contains a null

obj ect reference.

C = OBJ_NEW)

PRINT, "AEQB ', AEQB & $

PRINT, "ANEB ', ANEBG&S

PRINT, "AEQC ', AEQC& $

PRINT, 'C EQ NULL: ', C EQ OBJ_NEW) & $

PRINT, 'C NE NULL:', C NE OBJ_NEW)
IDL prints:

A EQ B: 1

A NE B: 0

AEQC 0

C EQ NULL: 1

C NE NULL: O

Operations on Objects

Building IDL Applications

Chapter 20: Object Basics 479
Obtaining Information about Objects

Three IDL routines allow you to obtain information about an existing object:
OBJ_CLASS

Use the OBJ_CLASS function to obtain the class name of a specified object, or to
obtain the names of a specified object’s direct superclasses. For example, if we create
the following class structures:

struct = {classl, datal:0.0 }
struct = {class2, data2a:0, data2b:0L, INHERI TS cl assl }

We can now create an object and use OBJ_CLASS to determine its class and
superclass membership.

; Create an object.
A = OBJ_NEW' cl ass2")

;Print A's cl ass menber ship.
PRI NT, OBJ_CLASS(A)

IDL prints:
CLASS2
Or you can print as superclasses:

;Print A's supercl asses.
PRI NT, OBJ_CLASS(A, /SUPERCLASS)

IDL prints:

CLASS1
See OBJ CLASS inthe IDL Reference Guide for further details.
OBJ_ISA

Use the OBJ_I SA function to determine whether a specified object is an instance or
subclass of a specified object. For example, if we have defined the object A as above:

IF OBJ_I SA(A, 'class2') THEN $
PRINT, "Ais an instance of class2.'

IDL prints:
A is an instance of class2.

See OBJ ISA inthe IDL Reference Guide for further details.

Building IDL Applications Obtaining Information about Objects

480 Chapter 20: Object Basics

OBJ_VALID

Use the OBJ_VALID function to verify that one or more object references refer to
valid and currently existing object heap variables. If supplied with a single object
reference asits argument, OBJ VALID returns TRUE (1) if the reference refersto a
valid object heap variable, or FALSE (0) otherwise. If supplied with an array of
object references, OBJ VALID returns an array of TRUE and FAL SE values
corresponding to the input array. For example:

:Create a class structure.
struct = {cnanme, data:O0.0}

;Create a new obj ect.
A = OBJ_NEW' CNAME')

IF OBJ_VALID(A) PRINT, "Arefers to a valid object." $
ELSE PRI NT, "A does not refer to a valid object.”

IDL prints:
A refers to a valid object.
If we destroy the object:

; Destroy the object.
OBJ_DESTROY, A

IF OBJ_VALID(A) PRINT, "Arefers to a valid object." $
ELSE PRI NT, "A does not refer to a valid object.”

IDL prints:
A does not refer to a valid object.

See OBJ VALID inthe IDL Reference Guide for further details.

Obtaining Information about Objects Building IDL Applications

Chapter 20: Object Basics 481
Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects viatheir object references using the method invocation operator.

While object methods are constructed in the same was as any other IDL procedure or
function, they are different from other routines in the following ways:

e Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs.

» All method routines automatically pass an implicit argument named sel f ,
which contains the object reference of the object on which the method is
called.

¢ Object methods cannot be called on their own. You must use the method
invocation operator and supply avalid object reference, either of the class the
method belongs to or of one of that class' subclasses.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, along with two
colons, is prepended to the method name:

PRO Cl assNane: : Met hod
| DL statenents
END

or

FUNCTI ON O assName: : Met hod, Argunentl
| DL statenents

RETURN, val ue

END

For example, suppose we create two objects, each with its own “ print” method.
First, define two class structures:

struct = { classl, datal:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERI TS cl assl }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)

Building IDL Applications Method Routines

482

Chapter 20: Object Basics

PRO classl::Printl
PRI NT, self.datal
END
PRO cl ass2::Print2
PRI NT, self.datal
PRI NT, sel f.data2a, self.data2b
END

Once these procedures are defined, any objects of classl have access to the method
Print1, and any objects of class2 have access to both Printl and Print2 (because
class2 is a subclass of—it inherits from—classl). Note that the Print2 method prints
the datal field inherited from classl.

Note
It is not necessary to give different method names to methods from different
classes, as we have done here with Print1 and Print2. In fact, in most cases both
methods would have simply been called Print, with each object class knowing only
about its own version of the method. We have given the two procedures different
names here for instructional reasons; see “Method Overriding” on page 485 for a
more compl ete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from.

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.

Calling Method Routines

You must use the method invocation operator (- >) to call amethod on an object. The
syntax is dightly different from other routine invocations:

; For a procedure nethod.
Obj Ref -> Met hod

:For a function nethod.
Result = bj Ref -> Method()

Method Routines Building IDL Applications

Chapter 20: Object Basics 483

Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class' subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:

A
B

OBJ_NEW' cl ass1')
OBJ_NEW' cl ass2')

We can call Printl on the object A as follows:
A->Printl

IDL prints:
0. 00000

Similarly, we can call Print2 on the object B:
B->Print2

IDL prints:

0. 00000
0 0

Since the object B inherits its properties from classl, we can also cal Printl on the
object B:

B->Printl
IDL prints:
0. 00000

We cannot, however, call Print2 on the object A, since classl does not inherit the
properties of class2:

A->Print2
IDL prints:

% Attenpt to call undefined method: ' CLASS1:: PRI NT2'.

Searching for Method Routines

When amethod is called on an object reference, IDL searches for it as with any
procedure or function, and callsit if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 468.) In other words, IDL discovers methods asit needsthemin
the same way as regular procedures and functions, with the exception that it searches
for files named

Building IDL Applications Method Routines

484

Chapter 20: Object Basics

cl assname__net hod. pro
rather than simply
net hod. pro

Remember that there are two underscores in the file name, and two colonsin the
method routine's name. See “Executing Program Files’ in Chapter 2 of Using IDL
for details.

Note
If you are working in an environment where the length of filenamesis limited, you
may want to consider defining all object methods in the same .pro file you useto
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different .pro files, make sure that all class (and superclass) definition
filenames are unique in the first eight characters.

Method Routines Building IDL Applications

Chapter 20: Object Basics 485
Method Overriding

Unlike datafields, method names can be duplicated. Thisis an important feature that
allows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding allows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searchesfor amethod of that class with that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct name is called. If no method of the
specified name is found, an error occurs.

The method search proceeds depth first, left to right. This meansthat if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the leftmost included class—and all of its superclasses—
before proceeding to the next inherited classto theright. If amethod is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This meansthat class designers should pick non-generic names
for their methods as well astheir data fields. For example, suppose we have defined
the following classes:

struct = { classl, datal}

struct = { class2, data2a:0, data2b:0.0, inherits classl }
struct = { class3, data3:'', inherits class2, inherits classl }
struct = { class 4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both cl ass1 and cl ass3 have amethod called Pri nt
defined.

Now suppose that we create an object of cl ass4, and call the Pri nt method:

A = OBJ_NEW' cl ass4')
A -> Print

IDL takesthe following steps:
1. Searchescl ass4 for aPri nt method. It does not find one.

2. Searchesthe leftmost inherited class (class?) in the class definition structure
for aPrint method. It does not find one.

3. Searchesany superclasses of class2 for a Print method. It finds the classl Print
method and callsit on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn't find the Print method that bel ongs to class3.

Building IDL Applications Method Overriding

486

Chapter 20: Object Basics

Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:
bj Ref -> cl assnane: : met hod

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

Thistype of method call is especially useful when aclass has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “Calling Method Routines” on
page 482, above, we could have defined aPr i nt method for each class, as follows:

PRO cl ass1:: Print
PRI NT, self.datal
END
PRO cl ass2:: Print
self -> classl::Print
PRI NT, self.data2a, self.data2b
END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we make the
following method calls:

A -> Print
IDL prints:

0. 00000
And now the B:

B -> Print
IDL prints:

0. 00000
0 0

Now we'll use the second method:
B -> classl::Print

IDL prints:
0. 00000

And now A:

A -> class2::Print

Method Overriding Building IDL Applications

Chapter 20: Object Basics 487
IDL prints:

% CLASS2 is not a superclass of object class CLASSI.
% Execution halted at: $MAIN$

Building IDL Applications Method Overriding

488 Chapter 20: Object Basics

Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimes in expanded form — in the exanpl es/ vi sual subdirectory of the IDL
distribution. By default, this directory is part of IDL’s path; if you have not changed
your path, you will be able to run the examples as described here. See 'PATH in the
IDL Reference Guide for information on IDL's path.

Object Examples Building IDL Applications

Part V. Creating
GUIs

Chapter 21.:

Using the

IDL GUIBuilder

The following topics are covered in this chapter:

OVEIVIEW ..ot 492
Starting the IDL GUIBuilder 494
Creating an Example Application 496
IDL GUIBuilder Tools 507
Widget Operations 520
GeneratingFiles 523
IDL GUIBuilder Examples 525
Widget Properties 539
Common Widget Properties 540

Building IDL Applications

Base Widget Properties 546
Button Widget Properties. 557
Text Widget Properties. 561
Label Widget Properties 566
Slider Widget Properties 568
Droplist Widget Properties 570
Listbox Widget Properties 572
Draw Widget Properties. 575
Table Widget Properties. 581

491

492

Chapter 21: Using the IDL GUIBuilder

Overview

Overview

The IDL GUIBuilder is part of the IDLDE for Windows. The IDL GUIBuilder
supplies you with away to interactively create user interfaces and then generate the
IDL source code that defines that interface and contains the event-handling routine
place holders.

Note

The IDL GUIBuilder is supported on Windows only. However, the code it
generatesis portable and runson all IDL supported platforms. Since applications
built with IDL GUIBuilder may require functionality added in the current release,
generated code only runs on the version of IDL you generated the code on or
greater.

The IDL GUIBuilder has several tools that simplify application development. These
tools alow you to create the widgets that make up user interfaces, define the behavior
of those widgets, define menus, and create and edit color bitmaps for use in buttons.

Note

When using code generated by the IDL GUIBUilder on other non-Windows
platforms, more consistent results are obtained by using arow or column layout for
your bases instead of a bulletin board layout. By using arow or column layout,
problems caused by differencesin the default spacing and decorations (e.g.,
beveling) of widgets on each platform can be avoided

These are the basic steps you will follow when building an application interface using
the IDL GUIBuilder:

1. Interactively design and create a user interface using the components, or
widgets, supplied in the IDL GUIBUilder. Widgets are simple graphical objects
supported by IDL, such as sliders or buttons.

2. Set attributes for each widget. The attributes control the display, initial state,
and behavior of the widget.

3. Set event properties for each widget. Each widget has a set of events to which
it can respond. When you design and create an application, it isup to you to
decideif and how awidget will respond to the events it can generate. Thefirst
step to having awidget respond to an event is to supply an event procedure
name for that event.

Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 493

4. Savetheinterface designto an IDL resourcefile, *. pr c file, and generate the
portable IDL source code files. There are two types of generated IDL source
code: widget definition code (*. pr o files) and event-handling code
(*_event cb. pro files).

5. Modify the generated * _event cb. pr o event-handling code file using the
IDLDE, then compile and run the code. This code can run on any IDL-
supported platform.

The* _event cb. pr o file contains place holders for all of the event procedures you
defined for the widgets, and you complete the file by filling in the necessary event
callback routines for each procedure.

Warning
Once you have generated the widget definition code (*. pr o files), you should not
modify this file manually. If you decide to change your interface definition, you
will need to regenerate the interface code, and will therefore overwrite that *. pr o
file. Any new event handling code will not be overwritten but will instead be
appended.

For information about IDL widgets, and how to create user interfaces
programmatically (without the IDL GUIBUilder), see Chapter 22, “Widgets”.

Building IDL Applications Overview

494 Chapter 21: Using the IDL GUIBuilder

Starting the IDL GUIBuilder

To open anew IDL GUIBuilder window, do one of the following:
e Sedect File -~ New - GUI from the IDLDE menu.
e Click the “New GUI” button on the IDLDE toolbar.

Each of these actions opens anew IDL GUIBuilder window and displays the IDL
GUIBuilder toolbar. The IDL GUIBUilder window contains a top-level base widget,
as shown in the following figure. This top-level base holds al of the widgets for an
individual interface; it isthe top-level parent in the widget hierarchy being created.

= | BlE| wlele] BleNERE g | 2| @l

of wed Jul & 23:50:35 MOT 1938> [win32 «86). Research Systems, Inc.

enter "IDLInfo" at the IDL> prompt.

Name Type Value

DL |
Ready [[[[MOM | v

Figure 21-1: IDLDE with IDL GUIBuilder Window

Starting the IDL GUIBuilder Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 495

Opening Existing Interface Definitions

To open an existing interface design in the IDL GUIBuilder:
1. Do one of the following to launch the Open dial og:
e Select File — Open from the IDLDE menu.
¢ Click onthe"Open” button on the IDLDE toolbar.
2. Inthe Open dialog, select the appropriate *. pr c file, and click Open.

The*. pr ¢ portable resource file contains the widget definitions that make up the
widget hierarchy and define your interface design. When you click Open, the existing
definition is displayed in an IDL GUIBuilder window. You can modify the interface
then save it, and you can generate new IDL source code for the modified definition.

Building IDL Applications Starting the IDL GUIBuilder

496

Chapter 21: Using the IDL GUIBuilder

Creating an Example Application

The following example takes you through the process of creating your first
application with the IDL GUIBuilder and the IDLDE. You will create the user
interface and write the event callback routines.

This simple example application contains a menu and a draw widget. When

compl ete, the running application allows the user to open and display a graphicsfile
in PNG format, change the color table for the image display, and perform smooth
operations on the displayed image.

This example introduces you to some of the basic procedures you will use to create
applications with the IDL GUIBuilder; it shows you how to define menus, create
widgets, set widget properties, and write IDL code to handle events.

Defining Menus for the Top-level Base

To define the menu, follow these steps:

1

Open anew IDL GUIBuilder window by selecting File -~ New — GUI from
the IDLDE menu, or click the “New GUI” button on the IDLDE toolbar.

Drag out the window then the top-level base to areasonable size for displaying
an image. For example, drag the base out so that it has an X Size attribute
value of 500 and a Y Size attribute value of 400. To view the attribute values,
right-click on the base, and choose Properties from menu. In the Properties
dialog, scroll down to view the X Sizeand Y Size attribute val ues.

Right-click on the top-level basein the IDL GUIBuilder window, then choose
Edit Menu. This opens the Menu Editor.

In the Menu Editor Menu Caption field, enter “File” and click Insert to set the
entered value and add a new line after the currently selected line. The new line
becomes the selected line.

To define the File menu items, do the following:

A. With the new line selected, click on the right arrow in the Menu Editor,
which indents the line and makes it a menu item.

B. Click inthe Menu Caption field and enter “Open...”.

C. Click inthe Event Procedure field and enter “OpenFile’. The OpenFile
routine will be called when the user selects this menu.

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 497
D. To create a separator after the Open menu, click the line button at the right

side of the dialog (above the arrow buttons).

To set the values and move to anew line, click Insert.

In the Menu Caption field, enter “Exit”.

In the Event Procedure field, enter “ OnExit”.

I o mm

To set the values and move to anew line, click Insert.
6. To define the Tools menu and its one item, do the following:

A. With the new line selected, click the left arrow to make the line atop-level
menu.

In the Menu Caption field, enter “Tools’, then click Insert.
Click theright arrow to make the new line a menu item.

In the Menu Caption field, enter “Load Color Table”.

In the Event Procedure field, enter “OnColor”.

nmmo o w

To set the values and move to anew ling, click Insert.
7. To define the Analyze menu and its one menu item, do the following:

A. With the new line selected, click the left arrow to make the line atop-level
menul.

In the Menu Caption field, type “Anayze’, then press Enter.
Click the right arrow to make the new line a menu item.
In the Menu Caption field, enter “ Smooth”.

mo O W

In the Event Procedure field, enter “DoSmooth”.

Building IDL Applications Creating an Example Application

498 Chapter 21: Using the IDL GUIBuilder

Your entries should look like those shown in the following figure.

tenu Editor

Menu Caption: I Ok |

Event Erazedire: I Cancel |

Name: [iwi_MENLI_1
¥ Enabled

mm (pen...

-
. E it

Tools

mm | oad Color Table
Analyze

. Smooth

le b v = 1

Delete | Inzert I

Figure 21-2: Menu Editor Dialog with Example Menus

8. Save your menu definitions by clicking OK in the Menu Editor.

Note
For more information about using the Menu Editor, see “Using the Menu Editor” on
page 514.

9. Atthistimeyou can click on the menusto test them. Your interface should
look similar to the onein the figure below.

10. Select File — Save from the IDLDE menu, which opensthe “ Save As’ dialog.

11. Inthe“Save As’ dialog, select alocation, enter “example.prc” in the File name
field, and click Save. Thiswrites the portable resource code to the specified
file.

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 499

|
[IDL Development Environment M=l B3

File Edt Seach Run Macros Window Help
A= 2] 2k 2l BEm ol B8] o] £ NS D&

File Todls Analyze

Atrbutes | Events |

Mame | Value
Name wiD_BASE_1
#of iows 1
Aligrment Default =
Allow Closing True =
Allaw Moving True =
Base Aigrment | Default —
Component Sizing Explicit L
Floating Fake =
Fiame False =
Grid Layout Fake =
DL isicn <Dswelopmsrt buld of Sur Aug 2 234312 MDT 1998 (wind2 x08] Ressarch | | | ayou Bulstin =
For basic infamation, enter “IDLInfo" ot the IDL> prampt Minimize/Mavimize) True =
hodal False -
DL |
Ready [T | UM | 4

Figure 21-3: IDL GUIBuilder with Example Application
Creating a Draw Widget

To create adraw areathat will display PNG imagefiles, follow these steps:

1. Click onthe Draw Widget tool button, then drag out an areathat fills the top-
level base display area. Leave asmall margin around the edge of the draw area
when you drag it out.

2. Right click on the draw area, and choose Properties to open the Properties
dialog for the draw area.

3. Inthe Properties dialog, click the push pin button so the dialog will stay open
and on top.

4. Inthe Properties dialog, change the draw widget Name attribute value to
“Draw”.

Building IDL Applications Creating an Example Application

500 Chapter 21: Using the IDL GUIBuilder

Later, you will write code to handle the display of the image in this draw area
widget. Renaming the widget now will make it easier to write the code later;
the “Draw” name s easy to remember and to type.

Note
The Name attribute must be unique to the widget hierarchy.

5. InthelDL GUIBuUilder window, click on the top-level base widget to select it.
When you do so, the Properties dialog will update and display the attributes for
this base widget.

6. Inthe Propertiesdialog, change the base widget Component Sizing attribute to
Default. This sizes the base to the draw widget size you created.

When you first dragged out the size of the base, the Component Sizing
attribute changed from Default to Explicit—you explicitly sized the widget.
Now that the base widget contains items, you can return it to Default sizing,
and IDL will handle the sizing of this top-level base.

7. Inthe Properties dialog, change the base widget Layout attribute to Column.

8. Select File » Save to save your new modificationsto the exanpl e. pr c file.
The application should look like the one shown in the following figure.

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 501

|
B8 IDL Development Envirenment = B3
File Edt Search Fun Macios Window Help

A= 2] 2k 2l BEm ol B8] o] £ NS D&

E1IDE

File Tools Analyze

Atiibutes | Events|

Name | Valus
Name WiD_BASE_1
of rows 1
Aligrment Default =
Allows Closing True =
Allov Maving Tiue =
Base Alignment Default —
Component Sizing (0T =
Floating False =l
Frame =
Grid Layout False =l
Layout Bulletin =
Minimize/Masimize True =l
IDL Version <Development build of Sun Aug 2 23:49:12 MDT 1998> [Win32 485). Research Sy | Modal False Ex
For basic information, enter "IDLInfo" st the IDL> prompt
DL |
Ready [[[[MNUM | 7

Figure 21-4: Complete Example Application

Running the Application in Test Mode

You can run the application in test mode, which allows you to test the display of
widgets and menus. To run your application in test mode, do one of the following:

¢ Sdect Run - Test GUI from the IDLDE menu.
* Press Control+t.

Both these actions display the interface as it will look when it runs. You can click on
the menus, but there is no active event handling in test mode.

To exit test mode, do one of the following:
* Pressthe Esc key.
* Click the X in the upper-right corner of the test application window.

Building IDL Applications Creating an Example Application

502 Chapter 21: Using the IDL GUIBuilder

Generating the IDL Code

To generate the code for the example application, follow these steps:

1. Select File —» Generate.pro. Inthe“Save As’ diaog, find the location where
you want the files saved, enter “example.pro” in the File namefield, and click
Save. This generates an exanpl e. pr o widget definition file and an
exanpl e_event cb. pro event-handling file.

Theexanpl e. pr o file contains the widget definition code, and you should
never modify thisfile. If you decide later to change your interface, you will
need to regenerate thisinterface code, and thus overwrite the widget code file.

Theexanpl e_event cb. pr o contains place holders for all the event
procedures you defined in the IDL GUIBuilder Menu Editor and Properties
dialog. You must complete these event procedures by filling in event callback
routines. If you generate code after you have modified thisfile, any new event
handling code will not be overwritten but will instead be appended. For
information on ways to handle regenerating the *_event cb. pr o file, see
“Notes on Generating Code a Second Time” on page 524.

For more information on interface definitions and generated code, see
“Generating Files” on page 523.

Note
You should modify only the generated event-handling file (* _event cb. pr o); you
should never modify the generated interface code (the *. pr o file).

Handling the Open File Event

You can now modify the generated exanpl e_event cb. pr o file to handle the
events for the application. First, you will modify the OpenFile routine.

When the user selects Open from the File menu of the example application, the
appropriate event structure is sent, and the OpenFile routine handles the event. For
this application, the Open menu item will launch an Open dialog to allow the user to
choose a PNG file, and then the routine will check the selected file'stype, read the
image, and display it in the draw area.

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 503

To open the file and add the code to handle the OpenFile event, follow these steps:

1. Select File — Open from the IDLDE menu. In the “Open” dialog, select the
exanpl e_event cb. pro file, and click Open. Thisfile contains the event
handling routine place holders, which you will now complete.

2. Intheexanpl e_event chb. pr o file, locate the OpenFile procedure, which
lookslike this:

pro QpenFile, Event

end

Tip

To easily find the Openkile routine, select OpenFile from the Functions/Procedures
drop-down list on the IDLDE toolbar.

3. Add thefollowing code between the PRO and END statements to handle the
event:

; If there is a file, drawit to the draw w dget.
sFile = DI ALOG Pl CKFI LE(FI LTER=" *. png")
IF(sFile NE "")THEN BEG N
Find the draw wi dget, which is naned Draw.
wDraw = W DGET_I NFQ(Event . t op, FI ND_BY_UNAME=' Dr aw);
; Make sure sonething was found.
| F(wDr aw GT 0) THEN BEG N
; Make the draw w dget the current, active w ndow.
W DGET_CONTROL, wDraw, GET_VALUE=i dDr aw
WBET, i dDr aw
; Read in the inmage.
im= READ PNG(sFile, r, g, b)
; If TrueColor image, quantize inage to pseudo-col or:
IF (SIZE(im /N.DM EQ 3) THEN $
im= COLOR QUAN(im 1, r, g, b)
Size the image to fill the draw area.
im= CONGRID(im !D. X _SIZE, !D.Y_SIZE)
; Handl e TrueCol or displ ays:
DEVI CE, DECOVPOSED=0
; Load color table, if one exists:
IF (N_ELEMENTS(r) GI 0) THEN TVLCT, r, g, b
Di splay the image.
TV, im
; Save the image in the uvalue of the top-level base.
W DGET_CONTROL, Event.top, SET_UVALUE=i m /NO_COPY
ENDI F
ENDI F

Building IDL Applications Creating an Example Application

504 Chapter 21: Using the IDL GUIBuilder

Note
In the added code, you used the FIND_BY UNAME keyword to find the draw
widget using its name attribute. In this example, the widget name, “Draw”, isthe
oneyou gavethewidget in the IDL GUIBuilder Properties dialog. The widget name
IS case-sensitive.

Handling the Exit Event

To add the code that causes the example application to close when the user chooses
Exit from the File menu, follow these steps:

1. Locate the OnExit routine place holder, which looks like this:

pro OnkExit, Event

end

2. add the following statement between the PRO and END statements to handle
the destruction of the application:

W DGET_CONTROL, Event.top, /DESTROY
Handling the Load Color Table Event

To add the code that causes the example application to open the IDL color table
dialog when the user chooses Load Color Table from the Tools menu, follow these

steps:
1. Locate the OnColor routine place holder, which looks like this:
pro OnCol or, Event

end

2. Add the following code between the PRO and END statements:

XLOADCT, /BLOCK
Find the draw wi dget, which is named Draw
wDraw = W DGET_I NFQ(Event .t op, FI ND_BY_UNAME=' Dr aw)
| F(wDraw GT 0) THEN BEG N
Make the draw wi dget the current, active w ndow
W DGET_CONTROL, wDraw, GET_VALUE=i dDr aw
WSET, i dDraw
W DGET_CONTROL, Event . top, GET_UVALUE=i m /NO_COPY
Make sure the inmge exists:
IF (N_ELEMENTS(in) NE 0) THEN BEG N
Di spl ay the imge:

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 505

TV, im
; Save the image in the uvalue of the top-Ilevel base:
W DGET_CONTROL, Event.top, SET_UVALUE=i m /NO_COPY
ENDI F
ENDI F

This procedure opens a dialog from which the user can select from a set of predefined

color tables. When the user selects a color table, it isloaded and the displayed image
changes accordingly.

Handling the Smooth Event

When the user selects Smooth from the Analyze menu, a smooth operation is
performed on the displayed image. The smooth operation displays a smoothed image
with a boxcar average of the specified width, which in the example codeis 5.

To add the callback routines to handle the smooth operation, follow these steps:

1. Locate the DoSmooth routine place holder, which looks like this:
pro DoSnoot h, Event

end

2. Add the following code between the PRO and END statements to handle the
smooth operation:

; Get the image stored in the uvalue of the top-Ievel-base.
W DGET_CONTROL, Event.top, GET_UVALUE=i mage, /NO_COPY
Make sure the inmge exists.
| F(N_ELEMENTS(i mage) GT 0) THEN BEG N
Srmoot h the i mage.
i mge = SMOOTH(i nage, 5)
Di spl ay the snoot hed i nage.
TV, inmage
Pl ace the new image in the uvalue of the button w dget.
W DGET_CONTROL, Event.top, SET_UVALUE=i nage, /NO_COPY
ENDI F

3. Select File » Save, to save al your changesto the exanpl e_event cb. pro
file.

Compiling and Running the Example Application

To compile and run your example application, type exanpl e at the IDL> command

prompt. The following figure shows the example application and the IDL color table
diaog.

Building IDL Applications Creating an Example Application

506 Chapter 21: Using the IDL GUIBuilder

In the running application, you can open and display a PNG file. Then, you can open
the XLOADCT dialog and change the color table used in displaying the image, or
you can perform the smooth procedure on the image.

ijIDL
Fie Tools Analyze

| XLoadct

Done | Help

% Tables ¢ Options ¢ Function

a
Ll

=
Stretch Bottom
100
4 |
=

Stretch Tap

1.00000

| |

Gamma Conection

Figure 21-5: Running Example Application and XLOADCT Dialog

Creating an Example Application Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 507

IDL GUIBuilder Tools

You will use the following tools to design and construct a graphical interface using
the IDL GUIBuilder:

The IDL GUIBuilder Toolbar, which you use to create the widgets that make
up your interface. See “Using the IDL GUIBUuilder Toolbar” on page 508 and
“Widget Operations’ on page 520.

The Widget Properties dialog, which you use to set widget attributes and event
properties. See “Using the Properties Dialog” on page 511 and “Widget
Properties’ on page 539.

The Widget Browser, which you can use to see the widget hierarchy and to
modify certain aspects of the widgets in your application. See “Using the
Widget Browser” on page 513.

The Menu Editor, which you use to define menus to top-level bases and
buttons. See “Using the Menu Editor” on page 514.

The Bitmap Editor, which you use to create or modify bitmap images to be
displayed on button widgets. See “Using the Bitmap Editor” on page 517.

The IDLDE to modify, compile, and run the generated code (see Chapter 3,
“The IDL for Windows Interface” in the Using IDL manual.

Building IDL Applications IDL GUIBuilder Tools

508 Chapter 21: Using the IDL GUIBuilder

Using the IDL GUIBuilder Toolbar

The IDL GUIBUilder hasits own toolbar in the IDE, which you use to create the
widgets for your user interface. The following figure shows the tool bar.

Base Button Radio Button
Select Cursor Checkbox

Text

k E|C|@®]| = a6l Al 2 |5 ED| m|E

Label Table
Horizontal Slider ~ Vertical Slider ~ Droplist ~ Listhox ~ Draw Area

Figure 21-6: IDL GUIBuilder Toolbar

These are the widget types you can create using the IDL GUIBuilder toolbar:

Widget Description

Base Creates a container for agroup of widgets within atop-level base
container. A top-level baseis contained in the IDL GUIBuilder
window, and you build your interface in it. Use base widgets
within the top-level base to set up the widget hierarchy, layout,
and to organize the application. For example, you can use a base
widget to group a set of buttons. For information on base
properties, see “Base Widget Properties’ on page 546.

Button Creates a push button. The easiest way to allow a user to interact
with your application is through a button click. You can have
button widgets display labels, menus, or bitmaps. For information
on button properties, see “Button Widget Properties’ on

page 557.

Table 21-1: Widget Types

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 509

Widget

Description

Radio Button

Creates atoggle button that is always grouped within a base
container. Use radio buttons to present a set of choices from
which the user can pick only one. For information on radio button
properties, see “Button Widget Properties’ on page 557.

Checkbox

Creates a checkbox, which you can use either as asingle toggle
button to indicate a particular state is on or off or asalist of
choices from which the user can select none to all choices.
Checkboxes are created within a base container. For information
on checkbox properties, see “Button Widget Properties’ on
page 557.

Text

Creates atext widget. Use text widgets to get input from users or
to display multiple lines of text. For information on text widget
properties, see “ Text Widget Properties’ on page 561.

L abel

Creates alabel. Use label widgets to identify areas of your
application or to label widgets that do not have their own label
property. Use labels when you have only a single line of text and
you do not want the user to be able to change the text. For
information on label widget properties, see “Label Widget
Properties’ on page 566.

Horizontal
and Vertical
Sliders

Creates a dider with a horizontal or vertical layout. Use slider
widgetsto allow the user to control program input, such as adjust
the speed of movement for arotating image. For information on
dlider properties, see“ Slider Widget Properties’ on page 568.

Droplist

Creates a droplist widget, which you can use to present a
scrollable list of items for the user to select from. The droplistis
an effective way to present alot of choices without using too
much interface space. For information on droplist properties, see
“Droplist Widget Properties’ on page 570.

Listbox

Creates alist widget, which you can use to present a scrollable
list of itemsfor the user to select from. For information on listbox
properties, see “Listbox Widget Properties’ on page 572.

Building IDL Applications

Table 21-1: Widget Types

IDL GUIBuilder Tools

510

Chapter 21: Using the IDL GUIBuilder

Widget Description

Draw Area Creates adraw area, which you can use to display graphicsin
your application. The draw areacan display IDL Direct Graphics
or IDL Object Graphics, depending on how you set its properties.
For information on the draw area properties, see “ Draw Widget
Properties’ on page 575.

Table Creates atable widget, which you can useto display datain arow
and column format. You can allow users to edit the contents of
the table. For information on the table widget properties, see
“Table Widget Properties’ on page 581.

Table 21-1: Widget Types

Note
The Select Cursor button returns the cursor to its standard state, and it indicates that
the cursor isin that state. After you click on another button and create the selected
widget, the cursor returns to the selection state.

Creating Widgets

All widgets for a user interface must be descendents of atop-level base; in the IDL
GUIBuilder window, all widgets must be contained in atop-level base widget. When
you open an IDL GUIBuilder window, it contains atop-level base. You can add base
widgets to that top-level widget to form awidget hierarchy. The added bases can act
as containers for groups of widgets.

To create awidget, do one of the following:

» Click on the appropriate button on the toolbar, then drag out an areawithin the
top-level base widget. When you rel ease the mouse button, awidget the size of
the dragged-out area is created.

» Click on the appropriate button on the toolbar, then click within the top-level
base area. This creates awidget of the default size.

After you add widgetsto atop-level base, you can resize, move, and delete them, and
you can change their parent base. You can aso set properties for each widget. For

information on how to operate on widgets, see “Widget Operations’ on page 520, and
for information on setting properties, see “Using the Properties Dialog” on page 511.

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder

Using the Properties Dialog

511

For each widget, you can define attribute and event procedure properties. A widget's
attributes define how it will display on the screen and its basic behaviors. The
attributes you can set for a selected widget are displayed on the Attributes tab of the
Properties dialog. These attributes areinitially set to default values.

Event procedures are the predefined set of events awidget can recognize. When you
write an application, you decide if and how the widget will respond to each of the
possible events. The events that a selected widget recognizes are displayed on the
Events tab of the Properties dialog. The event values are initially undefined. Supply
event routine names for only those events to which you want the application to

respond.
Opening the Properties dialog

To open the Properties dialog for awidget, do one of the following:

» Right-click on the widget in the IDL GUIBuilder window, and choose
Properties from the menu.

* Select the widget, and choose Properties from the Edit menu.

These actions open a Properties dialog similar to the one shown in the following
figure.

Froperties - WID_SLIDER_(

Building IDL Applications

Attributes | Eventsl ﬂ’?
Mame | Walue

Mame WwiD_SLIDER_D
Component Sizi Default j
Frame False j
I awirnum 100
Minirnum 1]
Pasition 1]
Sensitive True j
Suppress Yalue False j
Title
Offset 139
Size]
' Offset 44
' Size]

Figure 21-7: Properties Dialog for a Slider Widget

IDL GUIBuilder Tools

512

Chapter 21: Using the IDL GUIBuilder

The status area at the bottom of the Properties dialog contains a description of the
currently selected attribute or event. In addition, for each property that maps directly
to an IDL keyword, there is atool-tip that provides the name of the IDL keyword.

To display atool-tip, place the cursor over the property name. The tool-tips are
displayed only for properties that map to IDL keywords.

Note
If you have multiple widgets selected in the IDL GUIBuilder window, the
Properties dialog displays the properties for the primary selection, which is
indicated by the darker, filled-in sizing handles around the widget. When you select
multiple widgets, only one is marked as the primary selection.

To keep the Properties dialog on top, click the push pin button.

The Properties dialog will close as soon asit loses focus, unless you click the push
pin button. If you click the push pin button, the Properties dialog stays on top and
updates to reflect the properties of the currently selected widget.

To close the Properties dial og when the push pin is being used, do one of the
following:

» Click the push pin again, and the dialog will close when it loses focus.
* Press Escape while the dialog has focus.
* Click the X in the upper right corner of the dialog.

Any changes you make to values in the Properties dialog are automatic; you will see
the results of al visual changesimmediately. For example, any changes you make to
the alignment or column setting will change the layout position of the widget
immediately.

All widgets share a common set of properties, and each widget has its own specific
properties. These properties are arranged in the following order on the Attributes tab
of the Properties dialog:

» The Name attribute
* Analphabetica list of common and widget-specific properties, combined

On the Eventstab of the Properties dial og, the properties are displayed in alphabetical
order with common and widget-specific events combined.

For information on the properties you can set for each widget, see “Widget
Properties’ on page 539.

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 513

Entering Multiple Strings for a Property

There are several widget properties that you can set to multiple string values. The
attribute’'s Value field contains a popup edit control in which you can enter multiple
strings.

To enter more than one string in the edit control, do one of the following:
e Typein astring, then press Control+Enter at the end of each line.
e Typein astring, then press Control+j at the end of each line.

These actions move you to the next line. When you have entered the necessary string,
press Enter to set the values.

Using the Widget Browser

The Widget Browser of the IDL GUIBuilder isadialog window that presents the
current GUI in atree control. This presents the user with a different view into the
GUI they are designing.

To start the Widget Browser, right-click on any component in an IDL GUIBuilder
window, then choose Browse from the menu. This opens the Widget Browser, like
the one shown in the following figure.

‘widget Browser

=5 wiD_BASE_E

- AWID_LABEL D
- base2

Figure 21-8: Widget Browser

The Widget Browser is helpful when you want to see your widget hierarchy and
when you need to operate on overlapping widgets in your interface layout, which can
happen when you design an interface to show or hide widgets on specific events. For
an example that uses the Widget Browser for this purpose, see “ Controlling Widget
Display” on page 534.

Building IDL Applications IDL GUIBuilder Tools

514 Chapter 21: Using the IDL GUIBuilder

Note
In the Widget Browser, thereis no indication of defined menus.

You can expand the widget tree by clicking on the plus sign, or collapseit by clicking
on the minus sign.

When you select awidget in the hierarchy by clicking on it, the widget is selected in
the IDL GUIBUilder window, and the Properties dialog updates to display the
selected widget's properties.

Right-click on acomponent to display a context menu from which you can cut, copy,
paste, or delete the widget. From the context menu, you can also open the Properties
dialog and the Menu Editor, when appropriate. To delete a widget from the Widget
Browser, use the context menu, or select awidget and press the Del ete key.

To change awidget’s Name attribute in the Widget Browser, select the widget name
with two single clicks on the name. This changes the nameinto an editable text box in
which you can enter the new name. The Name attribute must be unique to the widget
hierarchy.

For more information on other ways to operate on widgets, see “Widget Operations”
on page 520.

Using the Menu Editor

You can add menus to top-level bases or to buttons that have the Type attribute set to
Menu. To define menus for your interface, use the Menu Editor, which is shown in
the following figure with defined menus. This dialog allows you to define menus,
menu items, submenu titles, and submenus, and all their associated event procedures.

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 515

For instructions on how to define the menus shown in the following figure, see
“Defining Menus for the Top-level Base” on page 496.

tenu Editor

Menu Caption: Ok
Esent Procedure:l Lancel |
[V Enabled
mm (pen... J
- KJ
. E it
Tools >
mm | oad Color Table J
Analyze
+
mm Smooth J
3|
Dete | [t]

Figure 21-9: Menu Editor Dialog

Adding Menus to Top-Level Bases

To define basic menus, menu items, submenu titles, submenus, and their associated
event procedures to top-level bases, follow these general steps.

1. Openthe Menu Editor by doing one of the following:
e Select thetop-level base and select Edit — Menu from the IDLDE menu.
¢ Right-click on the top-level base, then choose Edit M enu.

2. To define atop-level menu in the Menu Editor, enter a Menu Caption, and
click Insert. When you are defining menus for atop-level base, the top-level
menus are aligned along the left edge of the menu list, and the indentation
indicates the nesting in the menu.

Note
The Menu Caption is the name that appears on the menubar. If you are defining a
top-level menu for a base, you do not need to supply avalue in the Event Procedure
field. On button menus, however, where the button’s Label attribute acts as the top-
level menu, thefirst level of menusin the editor serve as menu items, and thus
require avalue in the Event Procedure field.

Building IDL Applications IDL GUIBuilder Tools

516 Chapter 21: Using the IDL GUIBuilder

3. To define amenu item on anew line in the editor, click the right arrow, enter a
Menu Caption and its associated event procedure, then click Insert. The Menu
Caption is the name you want to appear on the menu. The Event Procedureis
the name of the routine that will be called when the menu item is selected.

Note
For top-level bases, you must indent aline to make it a menu item and enable the
Event Procedure field.

4. To define a submenu title, enter the Menu Caption, and click Insert. It is not
necessary to define an Event Procedure for a submenu title.

5. To define submenus to a submenu title, enter the Menu Caption and the Event
Procedure, indent the item another level by using the right arrow, and click
Insert. Enter the submenus you want at thislevel of indentation.

6. To define another top-level menu or menu item, enter the information, click
the left arrow until the indentation is appropriate, and click Insert.

7. To define a separator, select ablank line, or select the line you want the
separator after, then click the separator button (which hasalineonit andis
above the arrow buttons).

8. To save your defined menus, Click OK in the Menu Editor. When you do so,
the menu items will appear on the top-level base. To test the display of the
menus, click on them.

Note
Under Microsoft Windows, including the ampersand character (&) in the Menu
Caption causes the window manager to underline the character following the
ampersand, which isthe keyboard accelerator. Thisfunctionality is supported in the
Menu Editor. If you are designing an application to run on other platforms,
however, avoid the use of the ampersand in the Menu Caption.

» To move amenu item to a new position: Select the menu item, click the up or
down arrow on the right side of the dialog until the menu itemisin the desired
position, then click OK.

* Toadd amenu item in the middle of existing menu items:. Select the line you
want the new item to follow, then click Insert. This adds a new line, for which
you can enter a Menu Caption and Event Procedure.

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 517
e Tomake amenu item display disabled initially: Click the Enabled checkbox
(to uncheck it). All menu items are enabled by default.
* Todelete amenu item: Select the item, then click Delete.

* Todelete amenu: Delete each contained menu item, then delete the top-level
menu.

Adding Menus to Buttons

You can aso create buttons that contain menus. To add a menu to a button, follow
these basic steps:

1. Click onthe Button widget tool on the toolbar, then click on the top-level base
area. This creates a button of the default size.

2. Right-click on the button and choose Properties to open the Properties dialog.
3. Inthe Properties dialog, change the value of the Type attribute to Menu.

4. Right-click on the button, then choose Edit M enu to open the Menu Editor.
You can define the menu items and submenus with the Menu Editor, using the
general steps described in “Using the Menu Editor” on page 514.

Note
For buttons, the Label attribute acts as the top-level menu, and the first level of
menus in the Menu Editor serve as menu items. Therefore, thefirst level requiresa
value in the Event Procedures field (unlike top-level menu items for bases).

5. After you have defined all the necessary menus, click OK. When you do so,
the menus are saved, and the button Label attribute is displayed as the top-level
menu.

To view menus on buttons, do one of the following:

« Immediately after creating the menu (after clicking OK in the Menu Editor),
click on the button, and the button menus will be displayed.

e At any other time, right-click on the button, and then choose Show M enu.
Using the Bitmap Editor

Use the Bitmap Editor to create 16 color bitmaps to be displayed on push buttons.
The Bitmap Editor can read and write bitmap files (* . brp). Using the editor, you can
create your own bitmaps, or you can open existing bitmap files and modify them.

Building IDL Applications IDL GUIBuilder Tools

518 Chapter 21: Using the IDL GUIBuilder

IDL suppliesaset of bitmap filesyou can use in the buttons of your applications. The
files are always available for loading. The bitmaps are located in the following
directory:

I DL_DI R\ r esour ce\ bi t maps
Placing a Color Bitmap on a Button
To display a bitmap on a button, follow these steps.

1. Right-click on the button widget, and choose Properties from the menu,
which opens the Properties dialog for this button.

2. Inthe Typefield, select Bitmap from the droplist.

3. Inthe Properties dialog, click on the arrow to the right of the Bitmap attribute,
and do one of the following:

» To place an existing bitmap on the button: Choose Select Bitmap, and
select a bitmap file from the Open dialog. Note that when Bitmap typeis
selected, the Labd attribute value changes to Bitmap.

» Toedit an existing bitmap and place it on the button: Choose Edit Bitmap,
then select the bitmap file from the Open dialog. This opens the bitmap in
the Bitmap Editor. The bitmap is displayed on the button when you save
thefile.

» Tocreate anew bitmap and place it on a button: Choose New Bitmap. This
opens the Bitmap Editor, which you can use to create the new bitmap.
When you save the*. bnp file, it is placed on the button.

When you compl ete one of these processes, the filename of the selected bitmap
appears in the Bitmap field of the Properties dialog, and the bitmap is
displayed on the button.

Note
For 16- and 256-color bitmaps, IDL uses the color of the pixel in the lower left
corner asthe transparent color. All pixels of this color become transparent, allowing
the button color to show through. This allows you to use bitmaps that are not
rectangular. If you have arectangular bitmap that you want to use as a button label,
you must either draw a border of adifferent color around the bitmap or save the
bitmap as 24-bit (TrueColor). If your bitmap also contains text, make sure the
border you draw is adifferent color than the text, otherwise the text color will
become transparent.

IDL GUIBuilder Tools Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 519

Using the Bitmap Editor Tools

The Bitmap Editor tools allow you to select from the color palette, and then use the
Pencil (pixel fill), the Flood fill (fill clear ared), or the Eraser (clear or color areas).
The Bitmap Editor tools are shown in the following figure.

Pencil (Pixel Fill) Flood Fill

e

SelectionCursor4|T Oy |2

Left-button Color
!I Right-button Color

Eraser

Color Selection Area

NN .
O[]
I B [
BT

Figure 21-10: Bitmap Editor Tools

You can select acolor by clicking on it in the color selection tool, or you can select
your primary colors, the left-button and right-button colors, and then click on atool
and draw on the bitmap canvas. You can change the primary color selections at any
time.

* To salect the left mouse button color: Left-click on the color in the color
selection area.

e To select aright mouse button color: Right-click on the color in the color
selection area.

« Tousetheleft color: With atool selected, click or press and drag the right
mouse button on the bitmap canvas.

* Tousetheright color: With atool selected, click or press and drag the left
mouse button on the bitmap canvas.

« To change the size of the bitmap: Drag the bitmap canvas to the desired size.

Building IDL Applications IDL GUIBuilder Tools

520 Chapter 21: Using the IDL GUIBuilder
Widget Operations

The DL GUIBUilder alowsyou to operate on widgetsin many ways. You can select,
deselect, move, cut, copy, paste, and delete widgets, and you can undo and redo
operations. This section describes the following:

e Selecting Widgets

* Moving and Resizing Widgets

e Cutting, Copying, and Pasting Widgets
» Deleting Widgets

» Undoing and Redoing Operations

Selecting Widgets

You can select awidget, then moveit or resizeit.

To select awidget, click on the widget.

To select more than one widget, do one of the following:
* Press Shift and click on each widget.

e Press Control and click on each widget. When you press Control, you can
change the selection state by clicking again on the widget; pressing Control
during selection allows you to toggle the selection state of awidget without
affecting the selection state of any other widget.

» Presstheleft mouse button and drag out an areain the top-level base that
includes the widgets you want to select. When you release the mouse button,
widgets in the selection box are selected.

When you select multiple widgets, there is always one primary selection. The
primary widget selection isindicated with the dark, filled-in selection handles. If you
open the Properties dialog with multiple widgets sel ected, the properties displayed
are those for the primary selection.

Note
When selecting multiple widgets, you can select only widgets that share the same
base widget as their parent.

Widget Operations Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 521

Moving and Resizing Widgets
You can move widgets around in their parent base by dragging the widget to a new
location or by using the arrow keys.

To move awidget to a new base, or to give awidget a new parent base within the
same top-level base, do one of the following:

« Press Alt and drag and drop the widget on the new parent base.

* Right-click on the widget, choose Cut from the menu, right-click on the new
base widget, and choose Paste from the menu.

To resize awidget, click on asizing handle, and drag to the desired size. To size the
widget larger than its parent base, press Alt and drag to the desired size.

Cutting, Copying, and Pasting Widgets

You can cut, copy, and paste widgets within the same base or to another base in
another IDL GUIBuilder window, using the Edit menu items, toolbar buttons, or a
context menu (opened with aright-click on the widget).

To cut or copy a selected widget, or to paste awidget from the clipboard, do one of
the following:

e Choose the desired operation from the Edit menu, or from the IDLDE toolbar.

* Right-click on the widget and select the desired operation from the menu. If
you are pasting, right-click on the base widget you want to paste into.

« Select the widget and use standard windows keyboard shortcuts to cut, copy,
or paste the widget.

Note
All cut or copied items are placed on alocal clipboard, not on the system clipboard.

Deleting Widgets

To delete awidget, do one of the following:
» Select the widget and choose Edit — Delete.
e Select the widget and press the Delete key.

* Right click on awidget and choose Delete from the menu.

Building IDL Applications Widget Operations

522 Chapter 21: Using the IDL GUIBuilder

Undoing and Redoing Operations

Inthe IDL GUIBuilder, you can undo or redo unlimited operations between save
procedures. If you save the resource file, the operations are cleared from memory.

To undo an operation, do one of the following:
» Select Edit — Undo.
» Click the“Undo” button on the IDLDE toolbar.
* PressControl+z.
To redo an operation, do one of the following:
» Select Edit - Redo.
» Click the“Redo” button on the IDLDE toolbar.

e Press Control+y.

Widget Operations Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 523
Generating Files

The IDL GUIBuilder generates the following two types of files:

» *_prc filesthat contain the resource definitions for the interface definition as
displayed in the IDL GUIBLUIilder.

« *_ profilesthat contain the generated IDL source code. The generated *. pr o
files are portable across al 1DL-supported platforms.

Generating Resource Files

The*. pr c files contain the resource definitions for the graphical interface. You can
open*. prc filesinthe IDL GUIBuilder and modify the interface at anytime. Do not
attempt to modify thisfile directly.

Tosavea*. prc filefor the first time, choose Save or Save Asfrom the IDLDE File
menu. This opensthe “ Save As’ dialog, which alows you to select alocation and
indicate afile name for the*. pr c file.

To havethe. pr c file generate code for a project, open the . pr ¢ file and do the
following for your platform:

* Windows: select File -~ Generate.
* Macintosh: select Project — Build.
e UNIX: select Project — Build.

Generating IDL Code

The IDL GUIBuilder can generate these two kinds of *. pr o IDL source codefiles:
* Widget definition code (*. pr o files).
» Event-handling code (* _event cb. pr o files).

To save both the widget code and the event handler * . pr o files, select File —
Generate .pro from the IDLDE menu. This opens the “ Save As’ dialog, which you
can use to select alocation and indicate a name for the widget code. The event code
file name is based on the name specified for the widget code. For example, if you
enter appl. pro inthe File namefield, the event code file will be named
appl_eventch. pro.

Building IDL Applications Generating Files

524

Chapter 21: Using the IDL GUIBuilder

Note
Never modify the generated * . pr o interface file. If you decide to modify the
application interface, use the IDL GUIBuilder, then regenerate the file. When you
regenerate the widget code, the file is overwritten.

Note
When you save both files, IDL putsthe RESOLVE_ROUTINE procedure in the
generated widget code. The procedure contains the name of the related
* _event cb. pro event-handler file so that it will be compiled and loaded with
when you run the widget code.

Notes on Generating Code a Second Time

When you modify an interface and save the *. pr c file, it is overwritten, which
should not be a problem. If you decide to change your interface, however, you will
need to regenerate the widget code and thus overwrite the * . pr o widget code file.

Note that if you regenerate either of the*. pr o files, they are overwritten. When
writing code, you should madify only the generated event-handling file

(* _event cb. pr o). You should never modify the generated widget code (the*. pr o
file). This allows you to change the interface and regenerate the definition code
without losing modifications in that file. This should simplify the procedures you
need to take to update or change an interface.

Because it is modular, the event-handler code is simple to modify after you change
the interface definitions. When you regenerate the IDL source code files, any new
event handler code is appended to the end of thefile.

Generating Files Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 525
IDL GUIBuilder Examples

After you define your interface and generate IDL code using the IDL GUIBuilder,
you will write the code that controls the application’s behavior. You can modify the
code, compileit, and run it using the IDLDE.

Generally, you will be writing the event-handler callbacks for the procedures |ocated
in the generated * _event cb. pr o file. While doing this, you might like to handle
initialization states, have multiple GUIs work together, add compound widgets, or
control widget display. For examples of how to handle these different types of events,
see the following sections:

¢ Understanding IDL GUIBuilder Event Handling Code
* Writing Event Callback Routines

* Handling Initialization Arguments

e Integrating Multiple Interfaces

e Adding Compound Widgets

» Controlling Widget Display

Understanding IDL GUIBuilder Event Handling Code

When using the IDL GUIBuilder, you assign event procedures to specific events
using the Events tab of the Properties dialog. The calling sequence for the eventsthat
you set are added to the generated * _event cb. pr o event callback code.

The argument that is passed into the specified event routine depends on the type of
event being processed. Creation, realization, and destruction event routines are
usually passed the ID of the involved widget, and all other callback routines are
passed the appropriate IDL widget event structure.

Itisanormal operation in applications to change the attributes of the interface when
certain events occur. One method used in handling events for IDL GUIBuilder
generated applicationsis the UNAME keyword, or the Name attribute, given to all
created widgets. (In a programmatically-created IDL application, thisaction is
handled using information stored in awidget component’s user value.)

When you create awidget in the IDL GUIBuilder, IDL givesit a name unique to the
widget hierarchy to which it belongs. You can rename the widget using the Name
attribute.

Building IDL Applications IDL GUIBuilder Examples

526

Chapter 21: Using the IDL GUIBuilder

In the generated code, this name is specified by the UNAME keyword. Because these
names are unique, you can use the WIDGET _INFO function with the
FIND_BY_UNAME keyword in your event callback routines to get the IDs of
widgets in the interface application.

Note

For information on properties, see “Using the Properties Dialog” on page 511, and
see “Widget Properties’ on page 539.

Writing Event Callback Routines

This short example shows how basic event processing works in code generated by the
IDL GUIBuilder. The example demonstrates how to use the FIND_BY_ UNAME
keyword to obtain the IDs of other widgets in the interface.

To create this simple example application, follow these steps:

1

Select File - New - GUI from the IDLDE menu. Thisopensanew IDL
GUIBuilder window.

In the IDL GUIBuilder window, right-click on the contained top-level base,
and choose Properties from the menu. This opens the Properties dial og.

In the open Properties dialog, click the push pin button to keep the dialog open
and on top.

On the Attributes tab of the Properties dialog, set the top-level base Layout
attribute to Column.

On the IDL GUIBuilder toolbar, click the Label Widget button, and click on
the top-level base areato add alabel widget to the base.

With the label widget selected, set the following attributes in the Properties
dialog:

* Inthe Namefield, enter “clock”.

e Set the Alignment attribute to Center.

» Set the Component Sizing attribute to Default.

* Inthe Text field, enter “No Time Currently Available’.

On the IDL GUIBUIlder toolbar, click the Button Widget button.

Click on the top-level base area, which adds a button widget to the interface.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 527

9. With the button selected, set the Label attributeto “ Time”.

10. In the Properties dialog, click the Events tab and set OnButtonPress to
“OnPress’.

Your interface definition should look like the one shown in the following figure.

B IDL Development Environment M=l E3

File Edit Search Hun Macroz Window Help

Blal=(@lE] 2] sRlE] BlElml Al ol 8le] #lolsmE]E s

2| wles]
% B 2| ®| | abi] Al | 2 |EH|ED m|E
&Y C:A\Rsi2AIDL52\time.prc =] E3 Froperties - \WID_BUTTOM_O
7@
3] 100 M =]k Attributes Events | J ,_
Mo TimeuFunentIy..évailable Name | Value
i] Handle Event
OnButtonPressilysEE
OnDestroy
OnRealize
OnTimer
OnTracking
PostCreation
Mame Type
II]\Locals {Paramsg Commong System | 4 | | _’I
DL> |
Ready LI i

Figure 21-11: Handling Events Example Application

11. Select File - Save from the IDLDE menu, which opensthe“ Save As’ diaog.

12. Inthe“Save As’ dialog, select alocation, enter “time.prc” in the File name
field, and click Save. This saves the interface definition to aresource file.

13. Sdlect File - Generate .pro from the IDLDE menu. Inthe“ Save As’ dialog,
select the location, enter “time.pro” in the File namefield, and click Save. This
savesthet i me. pr o widget codefileand theti me_event cb. pr o event
callback code to the specified directory.

14. Select File » Open from the IDLDE menu. In the “Open” dialog, select the
ti me_event cb. pro fileand click Open.

Building IDL Applications IDL GUIBuUilder Examples

528 Chapter 21: Using the IDL GUIBuilder

15. Inthet i me_event cb. pr o file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

16. Addthefollowing IDL code between the PRO and END statementsto handlea
button press:

; Get the widget ID of the | abel widget.
Label = widget _info(Event.top, find_by_ unane='clock')

; Set the value of the | abel widget to current tinme.
wi dget _control, Label, set_val ue=Systi nme(0)

The first command gets the ID of the label widget by searching the widget
hierarchy for awidget named “ clock”. Thisisthe name that you gave the label
widget in the IDL GUIBuilder Properties dialog. Once the ID isfound, the
second command sets the value of the label widget to the current system time.

17. Select Run — Compiletime_eventch.pro to save and compile the file.
18. To execute the program, enter t i me at the IDL command prompt.

Thiscompilesand runsthet i ne. pr o file. In the running application, you can press
the Time button to cause the current time to be displayed in the label.

Handling Initialization Arguments

You can provide runtime initialization information to the generated * . pr o widget
code by modifying the* _event chb. pr o file. Keywords provided to the generated
widget interface procedure are passed to the post creation routines using the
_EXTRA keyword.

If aroutine is defined with the _EXTRA keyword parameter, you can add
unrecoghized keyword and value pairs, and the pairs are placed in an anonymous
structure. The name of each unrecognized keyword becomes a tag name, and each
value becomes the tag value.

You will use this feature most often when your application launches floating or
modal dialogs, but the functionality is aways available.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 529

For example, if you want to display adialog at the creation of an application, you
would follow these basic steps:

1. Create an interface using the IDL GUIBuilder.

2. After creating the interface, open the Properties dialog for the top-level base
and set the PostCreation event for the top-level base widget to a routine name,
such as“OnCreate”.

Save the interface definition and generate the IDL source code.

4. Inthegenerated * _event cb. pr o event code file, locate the “ OnCreate’
routine place holder, which looks like this:

pro OnCreate, wWdget, _EXTRA=_VWMBExtra_
end

5. To process a specific keyword in this post creation routine, declare the
keyword in the procedure statement and add the processing code to the
procedure.

For example, to process the DO_DIALOG keyword in the defined OnCreate
procedure, add the DO_DIALOG keyword to the procedure, and add the logic
to handleit to the event callback routine. The completed procedure should ook
like this:

pro OnCreate, wWdget, DO DI ALOG=DO DI ALOG _EXTRA=_VWBExtra_

If DO D ALOG is set, display a sinple nmessage box.
i f(Keyword_Set (DO DI ALOG))then $
status = Di al og_Message("On Dial og Set")

end

6. Savethefile, then compile and generate the application. To show the dialog at
creation time, enter the following at the IDL command prompt:

<Pr ogramNanme>, /DO _DI ALOG
Integrating Multiple Interfaces

You can create multiple interfaces with the IDL GUIBuilder then integrate them to
form the complete application hierarchy. This example shows you how to construct
two interfaces and integrate them.

Building IDL Applications IDL GUIBuilder Examples

530

Chapter 21: Using the IDL GUIBuilder

Thefirst interface you will create is the main window, and it will consist of asimple
push button that will launch amodal dialog. The second interface you will createis
the modal dialog, and it will display a close button.

Creating the Main Window

To create the main window, follow these steps:

1

10.

Select File - New — GUI from the IDLDE menu to open anew IDL
GUIBuilder window with atop-level base.

On the IDL GUIBuilder toolbar, click on the Button Widget button, then click
on the top-level base. This adds a button of the default size to the base. You
can place the button anywhere in the base.

Right-click on the newly created button, and choose Properties from the
context menu to open the Properties dialog.

In the Properties dialog, click the push pin button to keep the dialog open and
on top.

Set the button’s Label attribute to “Modal Dialog”.

Click on the Properties dialog Events tab, and set the OnButtonPress value to
“OnPress’.

Select File - Save. Inthe*Save As’ dialog, select alocation, enter
“maingui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resourcefile.

Select File » Generate .pro. Inthe “Save As’ dialog, select alocation, enter
“maingui.pro” in the File name field, and click Save. This savesthe

mai ngui . pr o widget code and the mai ngui _evnet ch. pr o event-handler
code.

Select File » Open. Inthe “Open” diaog, select the
mai ngui _event cb. pr o file, and click Open.

Inthemai ngui _event cb. pr o file, locate the OnPress event procedure place
holder, which looks like this:

pro OnPress, Event

end

11. Add the following code between the PRO and END statements:

nodal gui, group_| eader=Event.top

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 531

You will create the “modalgui” dialog in the next set of steps. Note that you set
the GROUP_LEADER keyword here because the modal dialog requiresit.

12. Select Run — Compile maingui_eventch.pro. This saves and compiles the

file.

Creating the Modal Dialog

To create the modal dialog, follow these steps:

1
2.

Open anew IDL GUIBuilder window.

Inthe IDL GUIBUIilder window, select the top-level base, and set the following
in the Properties dialog:

* Set the Modal attribute to True.
e IntheTitlefield, enter “Modal Diaog”.

On the IDL GUIBuilder toolbar, click the button widget, then click on the top-
level base. This adds a button to the top-level base. Place it anywherein the
base.

With the new button selected, set the Label attribute value to “ OK”.

On the Eventstab of the Properties dialog, set the OnButtonPress value to
“OnModalPress’.

Select File —» Save. Inthe“ Save As’ dialog, select alocation, enter
“modalgui.prc” in the File name field, and click Save. This saves the interface
definition to an IDL resourcefile.

Select File — Generate .pro. Inthe “Save As’ dialog, select alocation, enter
“modalgui.pro” in the File name field, and click Save. This saves the

nmodal gui . pr o widget code file and the nodal gui _event cb. pr o event
callback file.

Open the nodal gui _event ch. pr o file and locate the OnM odal Press
procedure place holder. Then add the following code between the PRO and
END statements so that the dial og closes when the button is pushed:

wi dget _control, Event.top, /destroy

Save and compile thisfile.

Building IDL Applications IDL GUIBuilder Examples

532 Chapter 21: Using the IDL GUIBuilder

Running the Example Application

Enter mai ngui at the IDL command prompt. This command runs the main window.
You can pressthe Modal Dialog button, and the modal dialog is displayed. When you
press the OK button on the modal diaog, the dialog exits.

Adding Compound Widgets

The IDL GUIBuilder tools do not allow you to add a compound widget directly to
your interface. You can, however, modify your event code to add a compound
widget.

To add a compound widget to an IDL GUIBUilder generated interface, follow these
basic steps:

1. Add the compound widget to the widget tree in a PostCreation event callback
procedure.

2. Handle the events generated by the compound widget in the Handle Event
callback function. Set this event function value for the base widget that will
contain the compound widget.

Adding a Compound Widget to an Interface

This example demonstrates how to add a compound widget to an application
constructed with the IDL GUIBUilder. The application contains alabel and a
CW_FSLIDER compound widget. In the running application, the values generated
by CW_FSLIDER will be displayed in the label widget.

To create this application, follow these steps:

1. Select File - New — GUI from the IDLDE menu to open anew IDL
GUIBuilder window with atop-level base.

2. Right-click on the base and choose Propertiesto open the Properties dialog
for the top-level base.

3. Inthe Properties dialog, click the push pin button to keep the dialog on top.

4. Inthe Properties dialog of the top-level base, set the Layout attribute to
Column.

5. Toaddthelabel, click the Label Widget button on the toolbar, then click on
the top-level base. This creates alabel widget of the default size.

6. Withthelabel selected, set the following in the Properties dial og:
* Inthe Name vaue field, enter “label”.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 533

10.

11.

12.
13.

14.

e Set the Alignment attribute to Center.
e Set the Component Sizing attribute to Default.
e Inthe Text valuefield, enter “000.000".

Click the Base Widget button on the toolbar, and click on the top-level base.
This adds a base to the top-level base.

With the new base widget selected, set the Component Sizing attribute to
Default.

In the Properties dialog, click on the Eventstab and set the following base
widget event values:

* IntheHandle Event Value field, enter “HandleEvent”. Thisis the name of
the function that will handle the compound widget events.

e Inthe PostCreation Value field, enter “AddCW"”. Thisis the name of the
event routine that will create the compound widget.

Select File —» Save. Inthe " Save As’ dialog, select alocation, enter
“compound.prc” in the File namefield, and click Save. This savesthe interface
definition to an IDL resourcefile.

Select File - Generate .pro. Inthe “Save As’ dialog, enter “compound.pro”,
and click Save. This generates the conpound. pr o widget code file and the
conpound_event cb. pr o event-handler file.

Select File » Open, and open the conpound_event cb. pr o file.

Intheconpound_event ch. pro file locate the AddCW event routine place
holder, and insert the code to add the CW_FSLIDER compound widget to the
base widget. The routine should look like this:

pro AddCw, wW dget
i dslide = CWFSLI DER(WW dget, /SUPPRESS_VALUE)

end

Add the event callback routines to the generated HandleEvent function. The
function should look like this:

FUNCTI ON Handl eEvent, Event

Fslider event structure is an anonynous structure, so
; the following will return "" if it is fromfslider.

Building IDL Applications IDL GUIBuilder Examples

534

Chapter 21: Using the IDL GUIBuilder

| F(TAG_NAMES(Event, /STRUCTURE NAME) eq "") THEN BEG N

Get the id of the |abel widget using its nane.
id = widget_info(Event.top, find_by uname='label")

; Set the value of the label, to the value in the slider.
W DGET_CONTROL, id, set_value= $
String(Event.value, format='(f5.2)")
RETURN, O
Halt event processing here.
ENDI F

RETURN, Event

END

Note that the callback routine finds the label widget using the
FIND_BY_UNAME keyword with the name value you gave the widget in the
Properties dialog.

15. Select Run - Compile compound_eventch.pro to save and compile the file.
Running the Example

To run the application, enter conpound at the IDL command prompt. This complies
and runs the application. In the running application, movethe CW_FSLIDER and the
valueis placed in the label.

Controlling Widget Display

This example demonstrates how to use the IDL GUIBuilder to create an interface that
contains overlapping sub-bases containing different types of widgets. The example
shows how you can display and hide overlapping controlsin an interface created in
the IDL GUIBUilder, and it incorporates using the Widget Browser. Note that this
example is dlightly more complicated than the others.

This example constructs an interface with the following widgets:
A droplist.

A sub-base that contains two sub-bases:

One sub-base containing a text widget.

One sub-base containing a button.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 535

The two contained sub-bases overlap and the visibility of each is controlled by the
value selected in the droplist. When users select an item in the droplist, one sub-base
is hidden and the other one is displayed.

Creating the Interface

To create this application interface, follow these steps:

1

10.

11.

Select New — GUI from the IDLDE File menu to open anew IDL
GUIBuilder window with atop-level base.

Right-click on the top-level base, and choose Properties from the menu. This
opens the Properties dial og.

In the Properties dialog, click the push pin button to keep the dialog open and
on top.

In the Properties dialog, set the Layout attribute to Column.

On the IDL GUIBuUilder toolbar, click on the Droplist Widget button, then
click on the top-level base. This creates adroplist in the base area.

With the droplist selected, set the following in the Properties dialog:
* |IntheTitlevaluefield, enter “Active Base”.

* Inthelnitial Valuefield, click on the arrow. This displays a popup edit
control. Enter “Base One”, press Control+Enter to move to the next line,
enter “Base Two”, and press Enter to close the popup edit control.

On the Events tab of the Properties dialog, set OnSelectValue to “OnSelect”.

On the IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the top-level base. This adds a base widget of the default size to the interface.

With the new base selected, set the following attributes in the Properties
diaog:

* |nthe Name valuefield, enter “base0”.
¢ Set the Frame attribute to True.

Onthe IDL GUIBuilder toolbar, click on the Base Widget button, then click on
the base you just added. This adds a base widget to the “base0” widget.

With the newly-added base selected, set the following attributes in the
Properties dialog:

* |nthe Name valuefield, enter “basel”.

Building IDL Applications IDL GUIBuilder Examples

536

12.

13.

14.

15.

16.

17.

18.
19.

20.

Chapter 21: Using the IDL GUIBuilder

e Set the Component Sizing attribute to Explicit.
* |nthe X Offset valuefield, enter “0".
* Inthe X Sizevaluefield, enter “200".
* IntheY Offset valuefield, enter “0".
e |IntheY Sizevauefield, enter “200".

Right-click on a base, and choose Browse from the context menu. This opens
the Widget Browser.

In the Widget Browser, right-click on basel, and choose Copy, which copies
the widget to the local clipboard.

In the Widget Browser, right-click on “base0”, and choose Paste, which pastes
the copied basein to the “base0” widget. The new baseiscaled “basel 0".

In the Widget Browser, select “basel 0". This selectsthe basein the IDL
GUIBuilder window and updates the Properties dialog with the appropriate
properties and values.

With “basel 0" selected, set the following attributesin the Properties dialog:
* |Inthe Name valuefield, enter “base2”.

» Set the Component Sizing attribute to Explicit.

* Inthe X Offset valuefield, enter “0".

* Inthe X Sizevauefield, enter “200".

* IntheY Offset valuefield, enter “0".

* IntheY Sizevaluefield, enter “200".

Select File —» Save. Inthe“Save Asdialog”, select alocation, enter
“visible.prc” in the File namefield, and click Save. This saves the interface
definition.

In the Widget Browser, select “basel”.

With “basel” selected, set the Visible attribute to False. Thiswill hide “ basel”
and make “base2” visible.

On the IDL GUIBuilder toolbar, click the Button Widget button, then click on
“base2” in the IDL GUIBuilder. This adds a button to the base widget. Place
the button anywhere in this base.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 537

21. With the button selected, set the Label attribute to “ Button 2”.

22. Inthe Widget Browser, select “base?”, and using the Properties dialog, set the
Visible attribute to False to hide the base.

23. Inthe Widget Browser, select “basel”, and set the Visible attribute to True to
show the base.

24. On the IDL GUIBUilder toolbar, click the Label Widget button, then click on
“basel”. This adds alabel to “basel”. Place the label anywhere in this base.

25. With the label widget selected, set the Text attribute to “Label 1”.
26. Select File - Saveto save the changesto thevi si bl e. pr ¢ resourcefile.

The interface is now complete. It should look similar to the one shown in the
following figure.

B IDL Development Environment [_ (3] x]

File Edit Search Bun Macraz ‘window Help
plo|=(E=] 2% =] Blsm]| 2] o il EI@I @I@Iﬂlﬂliﬂl@
Qe @lesl| v B|2]®|] Al < |E5|El m|z| &

&4 C:AGUIB uild\visible prc

B wiD_BASE_E
&l WID_DROPLIST_D
=E u basel

VB E| D bazel
Active BaseIBase One 'l A wID_LABEL O
= D baze?

L@ WID_BUTTON_D

Label 1

Attributes | Evenlsl

MName | Walu
Marme basel
1 of rows 1
Alignrment Default
Base Alignment | Default
Component Sizing Explicit [=]]
Fase B
Grid Layout Falze =
Layout Bulletin j
Serdll Falze j
Marne [Sengitive True =l =
Space 3
Visible True B
o Locsts Srstem | ‘ 0
DL> |
Rizady | [oM

Figure 21-12: Visible Widgets Example Application

Building IDL Applications IDL GUIBuUilder Examples

538

Chapter 21: Using the IDL GUIBuilder

Generating and Modifying the Code

To generate and modify the code, follow these steps:

1

5.

Select File - Generate .pro. Inthe “Save As’ dialog, select alocation, enter
“visible.pro” in the File namefield, and click Save. This savesthe

vi si bl e. pr o widget code file and thevi si bl e_event cb. pr o event-
handler file.

Select File - Open, select thevi si bl e_event cb. pro file, and click Open.

Inthevi si bl e_event cb. pr o file, locate the OnSelect event procedure
place holder, which looks like this:

pro OnSel ect, Event

end
Add the following code between the PRO and END statements:

; Toggl e the mapping of the two I DL sub-bases and

get the Wdget IDs of the two sub-bases.
wBasel = Wdget_Info(Event.top, find_by_uname="basel")
wBase2 = Wdget | nfo(Event.top, find_by_unane="base2")

Now updat e the mappi ng.
wi dget _control, wBasel, map=(Event.index eq 0)
wi dget _control, wBase2, map=(Event.index eq 1)

The added IDL code gets the Widget 1 Ds of the sub-bases that you created and
sets the mapping (hide or show) of these bases depending on the selected value
of the droplist.

Select Run - Compilevisible eventcb.pro to save and compile thefile.

Running the Application

To run this application, enter vi si bl e at the IDL command prompt. This command
executes the visible application. In the running application, you can change the
selection in the droplist, and the action will change the displayed widget.

IDL GUIBuilder Examples Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 539
Widget Properties

For each widget type, thereis a set of attribute values and a set of event valuesyou
can set using the IDL GUIBuilder Properties dialog. When you select awidget in the
IDL GUIBuilder window or in the Widget Browser, the Properties dialog is updated
to contain the properties for the selected widget. These properties include those
common to all widgets and those specific to the selected widget.

On the Attributes tab of the Properties dialog, the properties are set to default values
and are arranged in the following order:

e The Name attribute.
e Anaphabetical list of common and widget-specific properties, combined.

On the Events tab, the possible events for awidget are listed in a phabetical order,
with the common and the widget-specific events combined. By default, no event
values are set initially. When you enter a routine name for an event property, you are
responsible for making sure that event procedure exists. IDL does not validate the
existence of the specified routine.

For information on how to open and use the Properties dialog, see “Using the
Properties Dialog” on page 511.

The rest of this chapter describes the properties you can set for each widget:
» Common Widget Properties
* Base Widget Properties
e Button Widget Properties
e Text Widget Properties
e Label Widget Properties
e Slider Widget Properties
e Droplist Widget Properties
e Listbox Widget Properties
e Draw Widget Properties
e Table Widget Properties

Building IDL Applications Widget Properties

540 Chapter 21: Using the IDL GUIBuilder
Common Widget Properties

There are several attribute and event property values you can set for al widgets. The
attribute properties include the name of the widget and the sizing properties. The
event propertiesinclude creation, realization, destruction, and tracking events.

The following sections describe the common properties.
e Common Attributes

¢ Common Events
Common Attributes

These are the common attributes, which you can set for all widgets:
Name

The Name attribute specifies the name of the component. Thisvalue can be any string
that is unique to the widget hierarchy of the interface, but the string cannot contain
spaces. For each widget you create in the IDL GUIBUIlder, adefault nameis
supplied, and thisnameisinthe WID_<TYPE>_<NUMBER> format.

If you copy and paste awidget in the IDL GUIBuilder, the new widget is given a
unique name based on the name of the one you copied. A humber is added to the first
widget’'s name, or an existing number isincremented.

You can use the Name value for the widget in your event callback routines. For
example, you can use the specified name to find the widget, using the
FIND_BY_UNAME keyword to the WIDGET _INFO function. Set the name for
each widget to a name that makes sense to you; set the name value to something that
is easy to remember and easy to usein your code.

In the generated * . pr o file, this valueis specified with the UNAME keyword to the
widget creation routines.

Component Sizing

The Component Sizing keyword determines how the component is sized, which is by
one of the following methods:

» Default: The widget issized to anatural or implicit size. Thisis the default
setting for the attribute. For example, alabel widget's natural sizeis
determined by the size of the text it is displaying with extra space for margins.
The default size for each widgetsis controlled by severa things, including

Common Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 541

displayed font size and the characteristics of the operating system displaying
the interface.

» Explicit: The widget size is determined by several attributes, which include
Layout for the base and itsown X Sizeand Y Size keywords.

In the generated * . pr o widget file, this value is specified with the XSIZE and
Y SIZE keywords to the widget creation routines.

Note
The default size of text widgets on Motif is based on the width of text, but the
default size for text widgets on Windows and Macintosh is approximately 20
characters.

Frame

The Frame attribute determines if the widget will have aframe or border around it.
These are the possible values:

* Fase: Thewidget will have no frame drawn around it. Thisisthe default
value.

* True: Thewidget will have aframe or border around it.
In the generated * . pr o widget file, thisvalue is specified by the FRAME keyword to
the widget creation routines.

Note
The Frame attribute is not available for top-level base widgets.

Sensitive

The Sensitive attribute determines if the selected widget is active or not active on
startup. You can set this value to determine if the user can access and manipulate the
widget immediately after creation. These are the possible values:

e True: Thewidget isinitially displayed as enabled and accepts keyboard or
mouse input and generates events. Thisis the default value.

* Fdse Thewidgetisinitially displayed as disabled and does not accept
keyboard or mouse input. The appearance of most widgets change when the
False valueis set, but the appearance does not always change to indicate this
State.

Building IDL Applications Common Widget Properties

542

Chapter 21: Using the IDL GUIBuilder

In the generated * . pr o file, thisvalue is specified with the SENSITIVE keyword to
the widget creation routines.

Note
To change the sensitivity of awidget after the widget is created, use the
WIDGET_CONTROL function with the SENSITIVE keyword.

X Offset

The X Offset attribute specifies the X offset of the component from its parent. The
possible values for X Offset are o to n, in pixels; any number isvalid. The'Y Offset
attribute specifiesthe Y offset.

Inthe generated * . pr o file, thisvalue is specified with the XOFFSET keyword to
the widget creation routines.

Note
The X Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

X Size

The X Size attribute specifies the width of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default sizeis
used). To enablethisvalue, set Component Sizing to Explicit. The possible valuesfor
X Sizeare0ton, in pixels.

In the generated * . pr o file, this value is specified with the SCR_XSIZE keyword to
the widget creation routines.

Note

If you add scroll bars to awidget, use the widget-specific X Scroll attribute to set
the width of the virtual area

Y Offset

The Y Offset attribute specifiesthe Y offset of the component from its parent in
pixels. The possible valuesfor Y Offset are 0to n, in pixels; any number isvalid. The
X Offset attribute specifies the X offset.

In the generated *. pr o file, thisvalue is specified by the YOFFSET keyword to the
widget creation routines.

Common Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 543

Note

TheY Offset attribute value is not used with base widgets that have the Layout
attribute set to Row or Column.

Y Size

TheY Size attribute specifies the height of the visible component in pixels. This
attribute is disabled when Component Sizing is set to Default (and the default sizeis
used). To enable this value, set Component Sizing to Explicit. The possible valuesfor
Y SizeareQton, in pixels.

In the generated * . pr o file, this value is specified with the SCR_Y SIZE keyword to
the widget creation routines.

Note

If you add scroll barsto awidget, use the widget-specific Y Scroll attribute to set
the height of the virtual area.

Common Events

These are the common events, which you can set for all widgets (by default, no event
values areinitially set):

Handle Event

The Handle Event value is the function name that is called when an event arrives
from awidget that isrooted in an IDL GUIBuilder-created widget in the hierarchy.
All events are sent to this event function, except for creation and destruction events.

For example, if you add a compound widget to an interface, using the PostCreation
event procedure for a base widget, you should set the Handle Event value for that
parent base widget (for the compound widget’s parent widget). Then, you can handle
al the events returned by the compound widget using this event function value.

In the generated * _event cb. pr o file, the event function place holder looks like
this:

Function <Nane>, Event

return, Event
End

Name is the name of the event function you specify. Event isthe returned event
structure, which is specific to the widget event.

Building IDL Applications Common Widget Properties

544

Chapter 21: Using the IDL GUIBuilder

For an example of how to handle the generated Handle Event function, see “Adding
Compound Widgets’ on page 532.

OnDestroy

The OnDestroy value is the routine name that is called when the widget is destroyed.
Inthe generated * _event ch. pr o file, the event calling sequence looks like this:

pro <Routi neNanme>, wW dget

RoutineName is the name of the event procedure you specify. ww dget isthe IDL
widget identifier.
OnRealize

The OnRealize value isthe routine namethat is called automatically when the widget
isrealized. In the generated * _event cb. pr o file, the event calling sequence looks
likethis:

pro <Routi neName>, wW dget

RoutineName is the name of the event procedure you specify. wA dget isthe IDL
widget identifier.
OnTimer

The OnTimer value is the routine name that is called when atimer event is detected
for awidget. In the generated * _event cb. pr o file, the event calling sequence looks
like this:

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which has the 3 standard event tags and looks like this:

{ WDGET_TIMER, |D:0OL, TOP:0L, HANDLER OL }

You must set timer events for awidget, using the WIDGET _CONTROL function.
The code generated by the IDL GUIBuilder only routes the events.

OnTracking

The OnTracking value is the routine name that is called when the widget receives a
tracking event, which occurs when the mouse pointer enters or leaves the region of
the widget. In the generated * _event cb. pr o file, the event calling sequence looks
likethis:

pro <Routi neName>, Event

Common Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 545

RoutineName is the name of the event procedure you specify. Event isthe returned
structure, which is of the following type:

{ WDGET_TRACKING, |D:0L, TOP:0OL, HANDLER OL, ENTER O }
ENTER is1if the tracking event is an entry event, and O if it is an exit event.
PostCreation

The PostCreation value is the routine name that is called after the widget is created,
but beforeit isrealized. In the generated * _event ch. pr o file, the calling sequence
looks like this:;

pro <RoutineNane>, W\ dget

RoutineName is the name of the event procedure you specify. wW dget isthe IDL
widget identifier.

Building IDL Applications Common Widget Properties

546 Chapter 21: Using the IDL GUIBuilder

Base Widget Properties

A base widget holds other widgets, including other base widgets. You can create
groupings of widgets by using a base widget, thus forming awidget hierarchy.

When you open the IDL GUIBuilder, atop-level baseis created, and you build your
interface in this base. Top-level bases are a specia class of the base widgets that are
created without parent widgets; they act as the top-level parent in the widget
hierarchy.

Inthe IDL GUIBUIilder, you can add a menubar to the top-level base by using the
Menu Editor.

In addition, you can make top-level bases float above their group leaders, with the
Floating attribute, or you can make them modal dialogs, with the Modal attribute.
Modal dialogs interrupt program execution until the user closes them. When you
make atop-level base floating or modal, you must provide a group leader when
calling the generated code, by using the GROUP_LEADER keyword.

When programming in IDL, you create base widgets using the WIDGET_BASE
function. For more information, see WIDGET_BASE in the IDL Reference Guide.

For more information on the Menu Editor, see “Using the Menu Editor” on page 514.

Note

A base widget’s layout is controlled by where you place it and the properties of its
parent base.

Base Widget Attributes

For base widgets, you can set common attributes and base-specific attributes. For a
list attributes common to all widgets, see “ Common Attributes’ on page 540.

Some of the base widget attributes apply to top-level bases only, and thislimitationis
noted in the following list of base widget attributes:

of Rows/Columns

The # of Rows/Columns attribute specifies the number of Columns or Rows to use
when laying out the base. This attribute is valid only when the Layout attribute is set
to Column or Row. The possible values for this setting are 1 to n, and the default
valueis1.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 547

In the generated * . pr o file, thisvalue is specified with the COLUMN or the ROW
keyword to the widget creation routine.

For information on other properties that control the layout of contained widgets, see
Alignment, Layout, Space, X Pad, and Y Pad.

Alignment

The Alignment attribute defines how components are aligned in the base. Theway in
which the value of this attribute affects the display of widgets depends on the value of
the Layout attribute. The following is alist possible values for the Alignment
attribute, and each val ue description includes information on how it works with the
Layout settings:

e Center: Alignsthe contained widgets with the center this parent base. Thisis
the default value. For this setting to take effect, the Layout setting must be
Row or Column. With Row set, the contained widgets are vertically centered.
With Column set, the contained widgets are horizontally centered.

e Top: Aligns contained widgets with the top of this parent base. For this setting
to take effect, the Layout setting must be Row.

« Bottom: Aligns the contained widgets with the bottom of this parent base. For
this setting to take effect, the Layout setting must be Row.

e Left: Alignsthe contained widgets with the left side of this parent base. For
this setting to take effect, the Layout setting must be Column.

* Right: Aligns the contained widgets with the right side of this parent base. For
this setting to take effect, the Layout setting must be Column.

e Default: Uses the default layout.

In the generated * . pr o file, these settings are specified with the
BASE_ALIGN_CENTER, BASE_ALIGN_TOP, BASE_ALIGN_BOTTOM,

BASE ALIGN_LEFT, and BASE ALIGN_RIGHT keywordsto the widget creation
routine.

For information on other propertiesthat control the layout of contained widgets, see#
of Rows/Columns, Layout, Space, X Pad, and Y Pad.

Allow Closing

The Allow Closing attribute determinesif the top-level base can be closed by the
user. By default, thisvalue is set to True and the base can be closed. To makeit so the
top-level base cannot be close, set this value to False.

Building IDL Applications Base Widget Properties

548

Chapter 21: Using the IDL GUIBuilder

In the generated * . pr o file, thisvalue is specified withthe TLB_ FRAME_ATTR
keyword to the widget creation routine.

For information on other properties that control aspects of top-level bases, see the
Allow Moving, Minimize/Maximize, System Menu, and Title Bar properties.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Allow Moving

The Allow Moving attribute determines if the base can be moved. By default, this
valueis set to True, and the base can be moved. To suppress this behavior, set this
valueto False.

In the generated * . pr o file, thisvalue is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Minimize/Maximize, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Floating

The Floating attribute determinesiif the top-level baseis a floating base (always on
top). By default, this setting is Fal se, indicating that the base is hot afloating base. To
create a floating base, set this attribute to True.

If you make atop-level base floating, you must set the GROUP_LEADER keyword
to avalid widget ID when calling the generated procedure.

In the generated * . pr o file, thisvalue is specified with the FLOATING keyword to
the widget creation routine.

Note
This attribute setting is used with top-level bases only.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 549

Grid Layout

The Grid Layout attribute determines if the base will have a grid layout, in which all
columns have the same width, or in which al rows have the same height. These are
the possible values:

* Fase: Columns or rows will not be the same size. Thisisthe default value.

* True: Column widths or row heights are taken from the largest child widget. If
you set this attribute to True, you must also set the Layout attribute to Column
or Row and the # of Rows/Columns attribute to more than 1.

In the generated * . pr o file, thisvalue is specified with the GRID_LAYOUT
keyword to the widget creation routine.

Layout

The Layout attribute specifies how components are laid out in the base. These are the
possible values:

« Bulletin: Indicates that you can position the widgets anywhere on the base.
Thisisthe default setting.

e Column: Indicated that widgets should bein columns. If you set thisvalue, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

¢ Row: Indicated that widgets should be in rows. If you set this value, you
should also set the # of Rows/Columns attribute and the Alignment attribute.

Note
When using code generated by the IDL GUIBuilder on other non-Windows
platforms, more consistent results are obtained by using arow or column layout for
your bases instead of a bulletin board layout. By using arow or column layout,
differencesin the default spacing and decorations (e.g., beveling) of widgets on
each platform can be avoided

The number of child widgets placed in each column or row is calculated by dividing
the number of created child widgets by the number of columns or rows specified (# of
Rows/Columns). When one column or row isfilled, anew oneis started.

Thewidth of each column or the height of the row is determined by the largest widget
in that column or row. If you set the Grid Layout attribute to True, all columns or
rows are the same size; they are the size of the largest widget.

If you set the Alignment attribute for the base, the contained widgets are their
“natural” size. If you do not set the Alignment attribute for the base or the child

Building IDL Applications Base Widget Properties

550

Chapter 21: Using the IDL GUIBuilder
widgets, all contained widgets will be sized to the width of the column or the height
of the row.

For information on other propertiesthat control the layout of contained widgets, see #
of Rows/Columns, Alignment, Space, X Pad, and Y Pad.

In the generated * . pr o file, thisvalue is specified with the COLUMN or the ROW
keyword to the widget creation routine.

Note
When you create aradio button or checkbox, it is created in a base, and you can add
more radio buttons or checkboxesto that base (the added widgets must all be of the
same type). The base in which radio buttons and checkboxes are created has a
column layout setting, and buttons you add will be lined up in a column format.

Minimize/Maximize

The Minimize/Maximize attribute determinesif the top-level base can be resized,
minimized, and maximized. By default, thisvalueis set to True. To disable this
behavior, set this attribute to False.

In the generated * . pr o file, thisvalue is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, System Menu, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Modal

The Modal attribute determines if this top-level baseis amodal dialog. By default,
thisvalueis set to False. To make the base amodal dialog, set this attribute to True.

If you set the Modal attribute to True, you cannot set the Scroll attribute, and you
cannot define a menu for the top-level base. In addition, the Sensitive common
attribute and the Visible base widget attribute are also disabled.

If you make atop-level base amodal dialog, you must set the GROUP_LEADER
keyword to avalid widget ID in the generated procedure.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 551

In the generated * . pr o file, thisvalue is specified with the MODAL keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Scroll

The Scroll attribute determines if the base widget will support scrolling. By defaullt,
this attribute is set to False, and the base will not support scrolling. To give the
widget scroll bars and allow for viewing portions of the widget contents that are not
currently inthe viewport area, set the Scroll attribute to True. In the IDL GUIBuilder,
scroll bars on bases are live so that you can work on the entire virtual area of your
application.

If you set the Modal attribute to True, you cannot set the Scroll attribute.

In the generated * . pr o file, thisvalue is specified with the SCROL L keyword to the
widget creation routine.

To set the size of the scrollable region, use the X Scroll and Y Scroll attributes.

Note
For the Macintosh, if you set X Sizeor Y Size to avalue less than 48, the base
created with the Scroll attribute will be a minimum of 48x48. If you have not
specified valuesfor the X Sizeor Y Size attribute, the base will be set to aminimum
of 66x66. If the base isresized, it will jump to the minimum size of 128x64.

Space

The Space attribute specifies the number of pixels between the contained widgets
(the children) in a column or row Layout. By default, thisvalue is set to 3 pixels and
that is the space between the contained widgets. Valid valuesfor this attribute are 0 to
n pixels.

In the generated * . pr o file, this value is specified with the SPACE keyword to the
widget creation routine.

To set the space from the edge of the base, use the X Pad and Y Pad properties. For
information on other properties that control the layout of contained widgets, see # of
Rows/Columns, Alignment, and Layoui.

Building IDL Applications Base Widget Properties

552

Chapter 21: Using the IDL GUIBuilder

Note
You cannot set this attribute on a base containing radio buttons or checkboxes.

System Menu

The System Menu attribute determines if the system menu is displayed or suppressed
on atop-level base. By default, this value is set to True, indicating that the system
menu will be used. To suppress the menu, set this attribute to False.

In the generated *. pr o file, thisvalue is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and Title Bar attributes.

Note
This attribute setting is used with top-level bases only.

Title

The Title attribute specifies the title of atop-level base. By default, thisvalueis set to
IDL, but you can change it to any string.

In the generated * . pr o file, thisvalue is specified with the TITLE keyword to the
widget creation routine.

Note
This attribute setting is used with top-level bases only.

Title Bar

The Title Bar attribute determines if the title bar will be displayed. By default, this
valueis set to True, and the title bar is displayed. To suppress the display of thetitle
bar, set this value to False.

For interfaces running on the Macintosh, you cannot suppress the title bar because
only modal dialogs use awindow without atitle bar. Suppressing the title bar would
be contrary to Macintosh Human Interface Guidelines and would create an
immovable window.

In the generated * . pr o file, thisvalue is specified with the TLB_FRAME_ATTR
keyword to the widget creation routine.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 553

For information on other attribute settings that control aspects of top-level bases, see
the Allow Closing, Allow Moving, Minimize/Maximize, and System Menu
attributes.

Note
This attribute setting is used with top-level bases only. Note that this setting is only
a hint to the window system and might be ignored by some window managers.

Visible

The Visible attribute specifies whether to show or hide the base component and its
descendants. Show, the default value, specifies to display the hierarchy when
realized. The Hide value specifies that the hierarchy should not be displayed initially.
This mapping operation applies only to base widgets.

In the generated * . pr o file, this value is specified with the MAP keyword to the
widget creation routine.

Note
If you set the Modal attribute to True, you cannot set the Visible attribute value.

X Pad

The X Pad attribute specifies the horizontal space (in pixels) between child widgets
and the edges of rows or columns. By default, this value is set to 3 pixels, indicating
that there are 3 pixels between the edge of the base and the contained widgets. Valid
values for this attribute are 0 to n pixels.

In the generated * . pr o file, thisvalue is specified with the XPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and Y Pad.

Note
You cannot set this attribute for a base that contains radio buttons or checkboxes. In
the IDL GUIBUilder, abaseis created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base. When
you add the buttons, they are lined up in a column format.

Building IDL Applications Base Widget Properties

554

Chapter 21: Using the IDL GUIBuilder

X Scroll

The X Scroll attribute specifies the width in pixels of the base area, which includes
the exposed as well asthe virtual area. Thereis no default value set, but you can set
this value to any number of pixelsfrom 0 to n. To add scroll bars to the base, use the
Scroll attribute, and to set the height of the scrollable base area, usethe Y Scroll
attribute.

In the generated * . pr o file, this value is specified with the XSIZE keyword to the
widget creation routine.

Note
To set the width of the displayed widget, use the X Size common attribute.

Y Pad

TheY Pad attribute specifies the vertical space (in pixels) between child components
and the edge of the base in arow or column Layout. By default, thisvalueis set to 3
pixels, indicating that there are 3 pixels between the edge of the base and the
contained widgets. Valid values for this attribute are 0 to n pixels.

In the generated * . pr o file, thisvalue is specified with the YPAD keyword to the
widget creation routine.

To set the space between widgets, use the Space attribute. For information on other
attributes that control the layout of contained widgets, see # of Rows/Columns,
Alignment, Layout, and X Pad.

Note
You cannot set this attribute on a base containing radio buttons or checkboxes. In
the IDL GUIBUIilder, abaseis created when you add a radio button or checkbox to
an interface, and you can add more radio buttons or checkboxes to that base.

Y Scroll

TheY Scroll attribute specifies the height in pixels of the base area, which includes
the exposed as well asthe virtual area. Thereis no default value set, but you can set
this value to any number of pixelsfrom O to n.

To add scroll bars to the base, use the Scroll attribute, and to set the width of the base
area, use the X Scroll attribute.

Inthe generated * . pr o file, thisvalue is specified with the Y SIZE keyword to the
widget creation routine.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 555

Note
To set the height of the displayed widget, usethe Y Size common attribute.

Base Widget Events

For base widgets, you can set common event properties and base-specific event
properties. By default, event values are not set. For alist of events common to all
widgets, see “Common Events’ on page 543.

Thefollowing isalist of event properties specific to base widgets:
OnFocus

The OnFocus value is the routine name that is called when the keyboard focus of the
base changes. In the generated * _event cb. pr o file, the event calling sequence
lookslike this:

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when the keyboard focus changes and is of the
following type:

{ WDGET_KBRD FOCUS, |D:0OL, TOP:OL, HANDLER OL, ENTER O }

ENTER returns 1 if the base is gaining the keyboard focus, and returns O if the baseis
losing the keyboard focus.

OnKillRequest

The OnKillRequest value is the routine that is called when the user attemptsto kill
the top-level base widget. In the generated * _event cb. pr o file, the event calling
sequence looks like this:

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when a user tries to destroy the widget using the
window manager and is of the following type:

{ WDGET_KILL_REQUEST, ID:OL, TOP:0OL, HANDLER OL }

Note that this event structure contains the standard three fields that all widgets
contain.

Building IDL Applications Base Widget Properties

556 Chapter 21: Using the IDL GUIBuilder

Note
This event procedure is valid for top-level bases only.

OnSizeChange

The OnSizeChange value is the name of the routine that is called when the top-level
base has been resize. In the generated * _event cb. pr o file, the event calling
sequence looks like this:

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which isreturned when the top-level baseisresized by theuser and is
of the following type:

{ WDGET_BASE, |D:0OL, TOP:0OL, HANDLER OL, X: 0, Y:0 }

The X and Y fields return the new width of the base, not including any frame
provided by the window manager.

Note
This event procedure is valid for top-level bases only.

Base Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 557
Button Widget Properties

In IDL, abutton widget can be a button (push button), radio button, or checkbox.

A push button is activated by asingle-click. Push buttons can be of any size. You can
set the Menu attribute to yes for a button widget, and then it can contain a pull-down
menu. When you do so, the Label is enclosed in abox to indicate that the buttonisa
menu button.

Radio buttons have two states, set and unset, and they belong to a group that allows
only one radio button selection for that group. The group is defined as all buttons
contained in the same exclusive base widget. When aradio button in abase (in a
group) is selected, any other button selection in that base is cleared. When you create
aradio button in the IDL GUIBuilder, it is created in an exclusive base widget, and
you can add only radio buttons to that base.

Checkboxes have two states, set and unset, and they are grouped in anon-exclusive
base widget. The base widget allows for any number of checkboxes to be set at one
time, and you can also use single checkboxes in your interface. When you create a
checkbox in the IDL GUIBLUilder, it is created in an non-exclusive widget base, and
you can add only checkboxes to this base.

When programming in IDL, you create push buttons, radio buttons, and checkboxes
using the WIDGET_BUTTON function. For more information, see
WIDGET_BUTTON in the IDL Reference Guide.

Note
The bases in which radio buttons and checkboxes are created have the Layout
attribute set to column so when you add more widgets they are lined up

appropriately.

Creating Multiple Radio Buttons or Checkboxes

To create several radio buttons or checkboxes in a base widget:

1. Click ontheradio button or checkbox tool, and click on the location to add the
button. This creates a base with one radio button or checkbox init.

2. Click on the radio button or checkbox tool, and click in the radio button or
checkbox base area you just created. This adds a radio button or checkbox to
the base.

Building IDL Applications Button Widget Properties

558

Chapter 21: Using the IDL GUIBuilder

When you drop a button in an exclusive or non-exclusive base, the added
buttons line up in columns; by default, these exclusive and non-exclusive bases
have their Layout attribute set to Column.

3. Repeat step 2 until you have the desired number of buttons.

4. If you want to change the layout of the checkboxes or radio buttons, you can
open the Properties dialog and set the Layout common attribute for the base
widget to Row or Bulletin.

5. To set the properties for each button in the base, open the Properties dialog,
click the push pin button to keep it on top, then click on each radio button or
checkbox to set their individual properties.

Button, Radio Button, and Checkbox Widget Attributes

For button widgets, you can set common attributes and button-specific attributes. For
alist of common attributes, see “Common Attributes’ on page 540. The following is
alist of button widget attributes, which apply to push buttons, radio buttons, and/or
checkboxes:

Alignment

The Alignment attribute specifies how the text label is aligned in the button widget.
These are the possible alignment values:

» Center: Thelabel text is centered.
e Left: Thelabd text isleft-justified.
* Right: Thelabel text isright-justified.

In the generated *. pr o file, thisvalue is specified by the ALIGN_CENTER, the
ALIGN_LEFT, or the ALIGN_RIGHT keyword to the widget creation routine.

Bitmap

The Bitmap attribute allows you to select abitmap to be displayed in the push button,
and it allows you to access the Bitmap Editor to create or modify abitmap file (*.bmp
file). This value applies only to buttons (not to radio buttons or checkboxes).

To set this value, set the Type value to Bitmap, then the Bitmap attribute displaysin
the Properties dialog. When the button type is*Bitmap”, you can set the Bitmap
attribute to the path and name of the bmp file.

When you click on the arrow in the Bitmap attribute Value field, you can choose
from the following options:

Button Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 559

» Select Bitmap: Launches an Open dialog that you can use to locate and select
the existing *.bmp file to be placed in the button.

» Edit Bitmap: Launches an Open dialog that you can use to locate and select the
existing *.bmp file to be opened in the Bitmap Editor. You can modify the
bitmap and save it. The bitmap is then displayed in the button.

* New Bitmap: Opens the Bitmap Editor which you can use to create and save a
bitmap. When you save the new bitmap, it is displayed in the button.

In the generated * . pr o file, this value is specified with the VALUE and Bitmap
keyword to the widget creation routine.

For information on using the Bitmap Editor, see “Using the Bitmap Editor” on
page 517.

Label

The Label attribute specifiesthe text label for abutton. If you set the Type attribute to
Bitmap (for push buttons only), this value is not displayed. For radio buttons and
checkboxes, the label value is the text string displayed next to the button. By default,
thisvalueis set to Button, and you can change it to any string.

In the generated * . pr o file, thisvalue is specified with the VALUE keyword to the
widget creation routine.

No Release

The No Release attribute enables and disables the dispatching of button release
events for radio buttons and checkboxes. Normal buttons do not generate events
when released, but radio buttons and checkboxes can return separate events for the
select and release actions. These are the possible values:

e True: Therelease event is not returned; only the select event isreturned. This
isthe default setting.

e Fase Both the release and select events are returned.
Inthe generated * . pr o file, thisvaluesis specified with the NO_REL EASE keyword
to the widget creation routine.

Note
The No Release attribute is for radio buttons and checkboxes only.

Building IDL Applications Button Widget Properties

560

Chapter 21: Using the IDL GUIBuilder

Type

The Type attribute specifiesif a push button is a plain push button, a menu button, or
a bitmap button. This attribute applies only to push buttons (not to radio buttons or
checkboxes). These are the possible values:

e Push: The button widget is a plain push button. This is the default value.

* Menu: The button contains a menu. After you select this value, you can right-
click on the button widget, choose Edit Menu, and define a menu to display,
using the Menu Editor.

» Bitmap: The button displays a bitmap, which you would use to create atool bar
for example. If you change the Type value to Bitmap, the Bitmap attributeis
displayed and you can select, modify, or create a bitmap to display on the
button.

In the generated * . pr o file, thisvalue is specified with the MENU or VALUE
keywords to the widget creation routine.

Button, Radio Button, and Checkbox Widget Events

For button widgets, you can set common event properties and button-specific event
properties. By default, event values are not set. For alist of events common to all
widgets, see “ Common Events’ on page 543.

The following is the event property specific to button widgets; it appliesto push
buttons, radio buttons, and checkboxes:

OnButtonPress

The OnButtonPress value is the routine that is called when the button is pressed, or
when abutton is released for aradio button or checkbox button. In the generated
* _event ch. pr o file, the event calling sequence looks like this:

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_BUTTON, ID:0OL, TOP:0L, HANDLER OL, SELECT:O0 }

SELECT issetto 1if the button was set, and 0 if released. Push buttons do not
generate events when released, so SELECT will always be 1 for a push button.
However, radio buttons and checkboxes are toggle buttons, and thus return separate
events for the set and the release actions. To control whether or not release events are
returned, set the No Release attribute.

Button Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 561
Text Widget Properties

Use text widgetsto display text, and optionally, use them to accept textual input from
users. The text widgets can have one or more lines, and if necessary, the widget can
contain scroll barsto allow for viewing longer text.

When programming in IDL, you create text widgets using the WIDGET_TEXT
function. For more information, see WIDGET_TEXT in the IDL Reference Guide.

Note
Use text widgets for displaying large amounts of text, or when you want the user to
be able to edit the text. Use label widgets to display single-line labels that the user
cannot edit.

Text Widget Attributes

For text widgets, you can set common attributes and text-specific attributes. For alist
of common attributes, see “ Common Attributes’ on page 540. The following are the
attributes specific to text widgets:

Editable

The Editable attribute determines if the text widget is editable or not. By default, this
valueis set to False, which means the text widget is not editable. To make the text
widget editable, set this value to True.

In the generated * . pr o file, thisvalue is specified with the EDITABLE keyword to
the widget creation routine.

Height

The Height attribute specifies the height of the text widget in text lines. Valid values
for this attribute are 1 to n. The default value, is 1, or one text line.

Note that the physical height of the text widget depends on the value of the Height
attribute and on the size of the font used. The default font size is used, unlessyou
modify your generated code to use a different font, and the default font sizeis
platform specific.

In the generated * . pr o file, thisvalue is specified by the Y SIZE keyword to the
widget creation routine.

Building IDL Applications Text Widget Properties

562

Chapter 21: Using the IDL GUIBuilder

Initial Value

The Initial Value attribute specifiestheinitial array of values that are placed in the
text widget. You can enter either astring or an array of strings.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each ling). This moves you to the next line. When you
have entered the strings you want, press Enter to set the values.

In the generated * . pr o file, thisvalue is specified by the VALUE keyword to the
widget creation routine.

Note
Variables returned by the GET_VALUE keyword to WIDGET _CONTROL are
aways string arrays, even if ascalar string is specified in the call to
WIDGET_TEXT.

Scroll

The Scroll attribute determinesiif the text widget displays scroll bars. By default, this
valueis set to False, which indicates that no scroll bars will be displayed. To have the
text widget display scroll bars, set thisvalueto True.

In the generated * . pr o file, thisvalue is specified by the SCROLL keyword to the
widget creation routine.

Width

The Width attribute specifies the width of the text widget in characters. Valid values
for this attribute are 0 to n. By default, Width is set to 0, which indicates that default
IDL sizing should be used when, as long as default Component Sizing is also set.

Note that the physical width of the text widget depends on the value of the Width
attribute and on the size of the font used. The default font size varies according to
your windowing system. On Windows and Macintosh, the default size is roughly 20
characters. On Motif, the default size depends on the system default.

In the generated * . pr o code, this value is specified with the X SIZE keyword.
Word Wrapping

The Word Wrapping attribute determines whether scrolling or multi-line text widgets
should automatically break lines between words to keep the text from extending past
the right edge of the text display area. By default thisvalueis set to False, and
carriage returns are not automatically entered; the value of the text widget will

Text Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 563

remain asingle-element array. To have the text widget enter carriage returns at the
end of lines, change this value to True.

In the generated * . pr o code, this value is specified with the WRAP keyword.
Text Widget Events

For text widgets, you can set common event properties and text-specific event
properties. By default, event values are not set. For alist of events common to al
widgets, see “Common Events’ on page 543.

You can set the following event values for text widgets:
OnDelete

The OnDelete value is the routine that is called when text is deleted from the text
widget. To set this event value, you must set the Editable attribute to True.

In the generated * _event cb. pr o file, the calling sequence looks like this:
pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when any amount of text is deleted from a text
widget. The event structure is of the following type:

{ WDGET_TEXT_DEL, ID:OL, TOP:OL, HANDLER OL, TYPE:2, OFFSET:OL,
LENGTH: OL }

OFFSET isthe (zero-based) character position of thefirst character to be deleted, and
it isalso the insertion position that will result when the characters have been deleted.
LENGTH gives the number of characters deleted, where O (zero) indicates that no
characters were deleted.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus changes. In
the generated * _event ch. pr o event code, the calling sequence looks like this:

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
structure, which is of the following type:

{ WDGET_KBRD_FOCUS, |D:0OL, TOP:0L, HANDLER: OL, ENTER O }

ENTER returns 1 if the text widget is gaining the keyboard focus, or 0 if the text
widget islosing the keyboard focus.

Building IDL Applications Text Widget Properties

564 Chapter 21: Using the IDL GUIBuilder

OnlinsertCh

The OnlnsertCh value is the routine that is called when a single character is inserted
in the widget. To set this event value, you must set the Editable attribute to True.

In the generated * _event ch. pr o file, the calling sequence looks like this:
pro <RoutineNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned a single character istyped or pasted into a text
widget by a user. The event structure is of the following type:

{ WDGET_TEXT CH, ID:OL, TOP:OL, HANDLER OL, TYPE:0, OFFSET:OL,
CH: 0B }

OFFSET isthe (zero-based) insertion position that will result after the character is
inserted. CH isthe ASCII value of the character.

OnlinsertString

The OnlnsertString value is the routine that is called when atext string isinserted in
the text widget. To set this event value, you must set the Editable attribute to True.

Inthe generated * _event ch. pr o file, the calling sequence looks like this:
pro <RoutineNanme>, Event

RoutineName is the name of the event procedure you specify. Event isthe event
structure that is returned when multiple characters are inserted in to text widget. The
event structure is of the following type:

{ WDGET_TEXT_STR, |D:0OL, TOP:0L, HANDLER OL, TYPE: 1, OFFSET:OL,
STR'" }

OFFSET isthe (zero-based) insertion position that will result after the text isinserted.
STRisthe string to be inserted.

OnTextSelect

The OnTextSelect value is the routine that is called when text is selected in the text
widget. To set this event value, you must also set the Editable attribute to True.

In the generated * _event ch. pr o file, the calling sequence looks like this:
pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when an area of text is selected. The event structure
is of the following type:

Text Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 565

{ WDGET_TEXT_SEL, 1D:0L, TOP:0OL, HANDLER OL, TYPE: 3, OFFSET:OL,
LENGTH: OL }

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character selected, which can also be the insertion

position. LENGTH gives the number of charactersinvolved, where zero indicates
that no characters are selected.

Note

Text insertion, text deletion, or any change in the current insertion point causes any
current selection to be lost. In such cases, the loss of selectionisimplied by the text

event reporting the insert, delete, or movement event, and a separate zero length
selection event is not sent.

Building IDL Applications Text Widget Properties

566

Chapter 21: Using the IDL GUIBuilder

Label Widget Properties

Label widgets display static text. They are similar to single-line text widgets, but they
are optimized for small labeling purposes.

There are no label widget-specific event properties.

When programming in IDL, you create label using the WIDGET_LABEL function.
For more information, see WIDGET_LABEL in the IDL Reference Guide.

Note
Use label widgets to display single-line labels that you do not want the user to be
ableto edit. Use text widgets for displaying larger amounts of text, or text that you
want the user to be able to edit.

Label Widget Attributes

For label widgets, you can set common attributes and |abel -specific attributes. For a
list of common attributes, see “ Common Attributes” on page 540. These are the label
widget attributes:

Alignment

The Alignment attribute specifies how label Text is aligned. These are the possible
values:

» Left: Thetext isleft-justified. Thisisthe default value.
* Center: Thetext is centered.
* Right: Thetext isright-justified.

In the generated * . pr o file, thisvalue is specified with the ALIGN_CENTER, the
ALIGN_RIGHT, or the ALIGN_LEFT keyword to the widget creation routine.

Text

The Text attribute specifies the text string that is displayed in the label widget. By
default, thisvalueis set to Label, and you can set it to any string.

In the generated * . pr o file, this value is specified with the VALUE keyword to the
widget creation routine.

Label Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 567

Label Widget Events

There are no events specific to Label widgets. For alist of the common widget
events, see “Common Events’ on page 543.

Building IDL Applications Label Widget Properties

568 Chapter 21: Using the IDL GUIBuilder
Slider Widget Properties

Horizontal or vertical slider widgets allow for the selection of a value within arange
of possibleinteger values. A dider widget isarectangular region representing arange
of values, with adliding pointer inside that indicates or selectsthe current value. This
dliding pointer can be manipulated by the user dragging it with the mouse, or within

IDL code.

When programming in IDL, you create horizontal or vertical slider widgets using the
WIDGET_SLIDER function. See WIDGET_SLIDER in the IDL Reference Guide.

Horizontal and Vertical Slider Widget Attributes

For slider widgets, you can set common attributes and slider-specific attributes. For a
list of common attributes, see “ Common Attributes’ on page 540. The following isa
list of dider attributes:

Maximum Value

The Maximum Value attribute specifies the maximum range value for the slider. The
default value is 100, but you can set this attribute to any integer. This value works
with the Minimum Value attribute.

In the generated * . pr o file, this value is specified with the MAXIMUM keyword to
the widget creation routine.

Minimum Value

The Minimum Value attribute specifies the minimum range value of the slider. The
default value is O, but you can set this attribute to any integer. This attribute works
with the Maximum Value attribute.

In the generated * . pr o file, thisvalueis specified with the MINIMUM keyword to
the widget creation routine.

Position

The Position attribute specifies the initial value position of the dlider. By default this
isset to 0, so theinitia position will be at 0. You can set this value to any integer
within the range of the Maximum Value and Minimum Value attribute settings.

In the generated * . pr o file, thisvalue is specified with the VALUE keyword to the
widget creation routine.

Slider Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 569

Suppress Value

The Suppress Value attribute controls the display of the current slider value. Sliders
work only with integer units. You can use this attribute to suppress the actual value of
adider so that a program can present the user with a dider that seemsto work in
other units (such asfloating-point) or with anon-linear scale. By default, thisvalueis
set to False, indicating that the current slider values, in integer units, should be
displayed. To suppress the display of the current values, set this attribute value to
True.

In the generated * . pr o file, this value is specified with the SUPPRESS VALUE
keyword to the widget creation routine.

Title

The Title attribute specifies the label or title that is associate with the slider widget.
By default, thisis not set; it is an empty string. You can set thetitle to any string.

In the generated * . pr o file, thisvalue is specified with the TITLE keyword to the
widget creation routine.

Horizontal and Vertical Slider Widget Events

For dlider widgets, you can set common event properties and slider-specific event
properties. By default, event values are not set. For alist of events common to al
widgets, see “Common Events’ on page 543.

Thisisthe event property specific to dider widgets:
OnChangeValue

The OnChangeVal ue specifies the routine that is called when the value of the dlider is
changed. When you set this event value, the calling sequence looks like thisin the
generated * _event cb. pro file

pro <RoutineNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which isreturned when adlider is moved. The event structureis of the
following type:

{ WDGET_SLIDER, ID:OL, TOP:OL, HANDLER OL, VALUE:OL, DRAG O }

VALUE returns the new value of the dider. DRAG returnsinteger 1 if the dlider event
was generated as part of adrag operation, or zero if the event was generated when the
user had finished positioning the slider. Note that the slider widget only generates
events during the drag operation if the DRAG keyword is set, and if the application is
running on Motif. That is, in most cases, DRAG will return zero.

Building IDL Applications Slider Widget Properties

570

Chapter 21: Using the IDL GUIBuilder

Droplist Widget Properties

Droplist widgets display asingle entry from alist of possible choices. To choose
from thelist, click the droplist, then click on theitem in the list. On Motif operating
systems, the droplist widget looks like a button, which when clicked displays the
drop-down list.

When programming in IDL, you create droplist widgets using the
WIDGET_DROPLIST function. For moreinformation, see WIDGET_DROPLIST in
the IDL Reference Guide.

Droplist Widget Attributes

For droplist widgets, you can set common attributes and droplist-specific attributes.
For alist of common attributes, see “ Common Attributes’ on page 540. These are the
droplist attributes:

Initial Value

The Initial Value attribute specifiestheinitial list of values that are placed in the
droplist widget. Theinitial value of adroplist can be ascalar string, or it can be alist
of strings. By default, thisvalue is not set, and the droplist is empty.

To enter more than one string in the Vaue field, type in a string, then press
Control+Enter (at the end of each ling). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

In the generated * . pr o file, thisvalueis specified with the VALUE keyword to the
widget creation routine.

Title

The Title attribute specifies the title string, or label, for the droplist. Thisvalue can be
any string. By default, thisvalueis set to NULL.

In the generated * . pr o file, thisvalue is specified by the TITLE keyword to the
widget creation routine.

Droplist Widget Events

For droplist widgets, you can set common event properties and droplist-specific event
properties. By default, event values are not set. For alist of events common to all
widgets, see “Common Events’ on page 543.

Thisisthe event property specific to droplist widgets:

Droplist Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 571

OnSelectValue

The OnSelectValue specifies the routine that is called when adroplist item is
selected. When a user selects an item from adroplist, the widget deselects the
previoudly selected item, changes the visible item on the droplist, and generates an
event.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb. profile

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when a user selects an item from adroplist. The
event structure is of the following type:

{ WDGET_DROPLI ST, ID:OL, TOP:OL, HANDLER: OL, | NDEX: OL }

INDEX returns the index of the selected item. This value can be used to index the
array of names originally used to set the widget's value.

Note
On some platforms, when a droplist widget contains only one item and the user
selectsit again, the action does note not generate an event. Events are always
generated on selection actions if the list contains multiple items.

Building IDL Applications Droplist Widget Properties

572 Chapter 21: Using the IDL GUIBuilder
Listbox Widget Properties

The listbox displays alist of text items from which a user can select, by clicking on
them. The listboxes have vertical scroll barsto allow viewing of along list of items.

When programming in IDL, you create listbox widgets using the WIDGET_LIST
function. For more information, see WIDGET _LIST in the IDL Reference Guide.

Listbox Widget Attributes

For listbox widgets, you can set common attributes and listbox-specific attributes.
For alist of common attributes, see “ Common Attributes’ on page 540. These are the
listbox widget attributes:

Height

The Height attribute specifies the height of the listbox based on the number of lines
that are visible. The possible values for the attribute are 1 to n. By default, Height is
set to 1, which indicates the default size of one line will be used.

Note that the final size of the widget may be adjusted to include space for scroll bars,
which are not always visible, so the listbox might be slightly larger than specified.

In the generated * . pr o file, this value specified with the Y SIZE keyword to the
widget creation routine.

Initial Value

The Initial Value attribute specifies the initial list of values that are placed in the list

widget. By default, the list is empty, but you can set this value to a scalar string or a

list of strings. List widgets are sized based on the length (in characters) of the longest
item specified in the array of values.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line. When you
have entered as many strings as you want, press Enter to set the values.

Inthe generated * . pr o file, thisvalue is specified by the VALUE keyword to the
widget creation routine.

Multiple

The Multiple attribute determinesif the user can select multiplelist items. By default,
the setting is False, which allows for only one selection. To enable multiple list item

Listbox Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 573

selection, set this value to True. Multiple selections are handled using the method
appropriate to the platform the application is running on.

In the generated * . pr o file, this value is specified with the MULTIPLE keyword to
the widget creation routine.

Width

The Width attribute specifies the width of the listbox in characters. The possible
values for the attribute are 0 to n. By default, Width is set to O, which indicates that
default sizing will be used, aslong as the Component Sizing attribute is set to default.

By default, IDL sizes widgets to fit the situation. However, if the desired effect is not
produced, use explicit Component Sizing with the Width attribute to set your own
sizing. Thefinal size of the widget may be adjusted to include space for the scroll bar,
which is not always visible, so your widget may be slightly larger than specified.

In the generated * . pr o file, this value specified with the X SIZE keyword to the
widget creation routine.
Listbox Widget Events

For listbox widgets, you can set common event properties and listbox-specific event
properties. By default, event values are not set. For alist of events common to all
widgets, see “ Common Events’ on page 543.

The following is the event property specific to listbox widgets:
OnSelectValue

The OnSelectValue specifiesavalid IDL routine name that is called when alist item
is selected. When a user clicks on an item in the listbox to select the item, an event is
generated.

When you set this event value, the calling sequence looks like this in the generated
*_eventcb. profile

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_LIST, ID:OL, TOP:0L, HANDLER OL, I NDEX OL, CLICKS:OL }

Thefirst three fields are the standard fields found in every widget event. INDEX
returns the index of the selected item. Thisindex can be used to subscript the array of
names originally used to set the widget's value. CLICKS returns either 1 or 2,

Building IDL Applications Listbox Widget Properties

574 Chapter 21: Using the IDL GUIBuilder

depending on how the list item was selected. If the list item is double-clicked,
CLICKSissetto 2.

Note
If you are writing awidget application that requires the user to double-click on alist
widget, you will need to handle two events. The CLICK Sfield will return al onthe
first click and a 2 on the second click.

Listbox Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 575
Draw Widget Properties

Draw widgets are rectangular regionsthat IDL treats as standard graphics windows.
Use draw widgetsto display either IDL Direct graphics or IDL Object graphics,
depending on the value of the Graphics Type attribute. You can direct any graphical
output that can be produced by IDL to one of these widgets, either by using the
WSET function or by using the object reference of adraw widget’s IDLgrWindow
object.

Draw widgets can contain scroll barsthat allow for viewing of a graphical region
larger than the area containing the widget.

When programming in IDL, you create draw area widgets using the
WIDGET_DRAW function. For more information, see WIDGET_CONTROL in the
IDL Reference Guide.

Draw Area Widget Attributes

For adraw areawidget, you can set common attributes and draw area-specific
attributes. For alist of common attributes, see “ Common Attributes” on page 540.
These are the draw area-specific attributes:

Color Model

The Color Model attribute specifies the color model that should be used for
displaying information on the draw widget. This attribute value is used only when the
Graphics Type attribute is set to Object, for IDL Object Graphics. These are the
possible values for the Color Model attribute:

* Index: The draw widget’s associated IDLgrWindow object uses indexed color.
* RGB: The RGB color moded isused. Thisisthe default value.

In the generated * . pr o file, thisvalueis specified by the COLOR_MODEL keyword
to the widget creation routine.

For information on using indexed color in Object Graphics window objects, see
Chapter 20, “Working with Color” in the Using IDL manual.

Colors

The Colors attribute specifies the number of colors that the drawable should attempt
to use from the system color table. This attribute is only valid with the Graphics Type
attribute is set to Direct, for IDL Direct Graphics. By default, the Color attributeis set
to 0, which indicates that IDL will attempt to get al available colors. That is, al or

Building IDL Applications Draw Widget Properties

576

Chapter 21: Using the IDL GUIBuilder

most of the available color indices are allocated, based on the window system in use.
You can set the Colors attribute to any integer, but most values will be in the range of
-256 < n < 256.

This attribute has effect only if it is supplied when the first IDL graphics window is
created. To use monochrome windows on a color display, set the Colors attribute to 2
for the first window. One color table is maintained for all running IDL windows.

Inthe generated * . pr o file, thisvalueis specified by the COLORS keyword to the
widget creation routine.

Graphics Type

The Graphics Type attribute specifies the type of graphics that the draw widget will
support. These are the possible values:

» Direct: Thedraw widget will display Direct Graphics. Thisisthe default value.
The Colors attribute is used only when Graphics Typeis set to Direct.

e Object: The draw widget will display IDL Object Graphics. The Color Model
and Renderer properties are used only when the Graphics Typeis set to Object.

In the generated * . pr o file, thisvalue is specified with the GRAPHICS LEVEL
keyword to the widget creation routine.

Renderer

The Renderer attribute specifies which graphics renderer to use with IDL Object
Graphics. That is, for this attribute to be used, the Graphics Type attribute should be
set to Object. These are the possible values for the Renderer attribute:

* OpenGL: The platform’s native OpenGL renderer is used when drawing
objects within the window. If your platform does not have a native OpenGL
implementation, IDL’s software implementation is used as the renderer. This
valueis set by default.

» Software: IDL’s software implementation is used when drawing objects within
the window.

In the generated * . pr o file, thisvalue is specified by the RENDERER keyword to
the widget creation routine.

For more information, see “Hardware vs. Software Rendering” in Chapter 28 of the
Using IDL manual.

Draw Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 577

Note
The renderer selection can also affect the maximum size of adraw widget.

Retain

The Retain attribute specifies how backing store is performed in the draw area. These
are the possible values:

* None: Thereisno backing store. When the Retain attribute is set to None, you
should track OnExpose events so that you can handle the redrawing of the
screen. Thisisthe default value.

e System: The server or window system should provide backing store.
e |DL Pixmap: IDL should provide backing store.

In the generated * . pr o file, thisvalue is specified with the RETAIN keyword to the
widget creation routine.

For information on the use of the Retain attribute with Direct Graphics, see“Backing
Store” in Appendix B of the IDL Reference Guide. For more information on this
attribute with IDL Object Graphics, see IDLgrWindow::Init in the IDL Reference
Guide.

Scroll

The Scroll attribute specifies if the draw area widget will support scrolling, and will
have scroll bars. By default, this valueis set to False, which indicates there are no
scroll bars. To display scroll bars, and enable scrolling, set this value to True. If you
do so, set the size of the scrollable area with the X Scroll and Y Scroll properties.

In the generated * . pr o file, thisvalue is specified with the SCROL L keyword to the
widget creation routine.

X Scroll

The X Scroll attribute specifies the width in pixels of the drawing area. Thiswidth
includes the exposed and virtual area. By default, this value is not set. You can set X
Scroll to any width from 0 to n. If you set this value, also set the Scroll and Y Scrall
attribute values.

In the generated * . pr o file, this value is specified with the X SIZE keyword to the
widget creation routine.

Building IDL Applications Draw Widget Properties

578

Chapter 21: Using the IDL GUIBuilder

Note
To set the width of the displayed widget, use the X Size common attribute.

Y Scroll

TheY Scroll attribute specifies the height in pixels of the drawing area. This height
includes the exposed and virtual area. By default, thisvalueis not set. You can set Y
Scroll to any height in pixels from 0 to n. If you set this value, also set the Scroll and
X Scroll properties.

In the generated * . pr o file, thisvalue is specified with the Y SIZE keyword to the
widget creation routine.

Note
To set the height of the displayed widget, usethe Y Size common attribute.

Draw Area Widget Events

For draw area widgets, you can set common event properties and draw area-specific
event properties. By default, event values are not set. For alist of events common to
all widgets, see “ Common Events’ on page 543.

These are the draw area event properties:
OnButton

The OnButton value is the routine that is called when a mouse button event is
detected. In the generated * _event cb. pr o file, the calling sequence looks like this:

pro <RoutineNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_DRAW |D:0OL, TOP:0OL, HANDLER OL, TYPE: 0, X 0, Y:0,
PRESS: 0B, RELEASE: 0B, CLICKS: 0 }

Note that thisis the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
Therefore the following paragraphs describe all these events.

TY PE returns a value that describes the type of draw widget interaction that
generated an event. If thereis abutton press, it returns 0, and if there is a button
release, it returns 1. If thereismotion, it returns 2 (for an OnMotion event). If the

Draw Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 579

viewport moved with the scroll bars, it returns 3 (for an OnViewportMoved event). If
the visibility changes, it returns 4 (for an OnExpose event).

The X and Y fields give the device coordinates at which the event occurred,
measured from the lower left corner of the drawing area.

PRESS and RELEA SE are bitmasks in which the least significant bit represents the
left-most mouse button. The corresponding bit of PRESS is set when a mouse button
is pressed, and in RELEASE when the button is released. If the event isamotion
event, both PRESS and REL EA SE returns zero.

CLICKSreturns either 1 or 2. If the time interval between button-press eventsis

greater than the time interval for adouble-click event for the system, the CLICKS
field returns 1. If the time interval between two button-press eventsis less than the
timeinterval for adouble-click event for the platform, the CLICK Sfield returns 2.

OnExpose

The OnExpose value is the routine that is called when the visibility of any portion of
the draw window (or viewport) changes or is exposed. In the generated
* _event cb. pr o file, the calling sequence looks like this:

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_DRAW ID:0OL, TOP:OL, HANDLER OL, TYPE: 0, X0, Y:0,
PRESS: 0B, RELEASE: 0B, CLICKS: 0 }

Note that thisis the same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.

OnMotion

The OnMotion value is the routine that is called when a mouse motion event is
detected. In the generated * _event cb. pr o file, the calling sequence looks like this:

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_DRAW ID:0OL, TOP:OL, HANDLER OL, TYPE: 0, X0, Y:0,
PRESS: 0B, RELEASE: 0B, CLICKS: 0 }

Building IDL Applications Draw Widget Properties

580 Chapter 21: Using the IDL GUIBuilder

Note that thisisthe same event structure returned for all draw area events; OnButton,
OnExpose, OnMoation, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.

OnViewportMoved

The OnViewportMoved value is the routine that is called when the viewport of a
scrolling draw widget is moved, using the scroll bars. In the generated
*_event ch. pr o file, the calling sequence looks like this:

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_DRAW | D:0OL, TOP:OL, HANDLER OL, TYPE: 0, X 0, Y:0,
PRESS: 0B, RELEASE: 0B, CLICKS: 0 }

Note that thisisthe same event structure returned for all draw area events; OnButton,
OnExpose, OnMotion, and OnViewportMoved events all return the same structure.
For information on this structure, see OnButton.

Draw Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 581
Table Widget Properties

Table widgets display data and allow for data editing by the user. Tables can have
one or more rows and one or more columns.

When programming in IDL, you create table widgets using the WIDGET_TABLE
function. For more information, see WIDGET_TABLE in the IDL Reference Guide.

Table Widget Attributes

For table widgets, you can set common attributes and table-specific attributes. For a
list of common attributes, see “Common Attributes’ on page 540. These are the table
widget-specific attributes:

Alignment

The Alignment attribute specifies how the text is aligned in the cells. These are the
possible values:

e Left: Thetext isleft-justified. Thisisthe default value.
¢ Right: Thetext isright-justified.
e Center: Thetext is centered.

In the generated * . pr o file, thisvalue is specified with the ALIGNMENT keyword
to the widget creation routine.

Column Labels

The Column Label s attribute specifies the labels for the table columns. By defaullt,
thisvalueis set to empty strings, but you can set it to any set of strings. To set the
|abels for table rows, use the Row Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for acolumn. When you have entered as many labels as you want, press Enter to
set the values.

In the generated * . pr o file, thisvalueis specified with the COLUMN_LABELS
keyword to the widget creation routine.

Display Headers

The Display Headers attribute determinesif the table headings, the row and column
labels, are displayed. By default, this valueis set to True, indicating that table

Building IDL Applications Table Widget Properties

582 Chapter 21: Using the IDL GUIBuilder

heading should be displayed. To disable the display of table headings, set this value
to False.

In the generated * . pr o file, the False value is specified with the NO_HEADERS
keyword to the widget creation routine.

Editable

The Editable attribute determines if the table widget is editable or not. By default,
thisvalueis set to False, which means the text widget is not editable, and the text is
read-only. To make the text widget editable, set this value to True.

Inthe generated * . pr o file, thisvalue is specified with the EDITABLE keyword to
the widget creation routine.

Number of Columns

The Number of Columns attribute specifies the number of columnsin the table
widget. This value setsthe full, virtual width of the table. By default, it is set to 6.

In the generated * . pr o file, thisvalue is specified with the XSIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Number of Rows

The Number of Rows attribute specifies the number of rowsin the table widget. This
value sets the full, virtual height of the table. By default, it is set to 6.

In the generated * . pr o file, thisvalue is specified with the Y SIZE keyword to the
widget creation routine.

Note
To have a scrollable table, set the Scroll attribute to True. Then, to specify the
visible size of the table, set the Viewport Columns attribute.

Resize Columns

The Resize Columns attribute determines if this user can resize table columns. By
default, this value is set to True, indicating that the user can resize the columns. To

Table Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 583

specify that the columns of the table are not resizeable by the user, set thisvalue to
False.

In the generated * . pr o file, thisvalueis specified with the
RESIZEABLE_COLUMNS keyword to the widget creation routine.

Note

If you set the Display Headers attribute to False, the ability to resize the columnsis
automatically disabled.

Row/Column Major

The Row/Column Major attribute specifies how datais transferred to the table
widget, either by Row or by Column. By default, this value is set to Row, indicating
that the data should be read into the table as if each element of the vector isa
structure containing one row’s data. To specify that the data should be read into the
table asif each element of the vector is a structure containing one column’s data, set
this value to Column. Note that for either setting to work properly the structures must
al be of the same type, and must have one field for each column or row in the table.

In the generated * . pr o file, this value is specified with the ROW_MAJOR or the
COLUMN_MAJOR keyword to the widget creation routine.

Row Labels

The Row Labels attribute specifies the label s for the table rows. By default, thisvalue
IS set to empty strings, but you can set it to any set of strings. To set the |abels for
table columns, use the Column Labels attribute.

To enter more than one string in the Value field, type in a string, then press
Control+Enter (at the end of each line). This moves you to the next line, or the next
label for arow. When you have entered as many labels as you want, press Enter to set
the values.

In the generated * . pr o file, thisvalue is specified with the ROW_LABEL S keyword
to the widget creation routine.

Scroll

The Scroll attribute determinesiif the table widget has scroll bars. By default, this
valueis set to False, indicating that the table will have no scroll bars. To enable scroll
bars, set thisvalue to True. If you set this value to True, you can set the size of the
scrollable region with the Viewport Rows and Viewport Columns properties.

Building IDL Applications Table Widget Properties

584 Chapter 21: Using the IDL GUIBuilder

In the generated * . pr o file, thisvalue is specified with the SCROLL keyword to the
widget creation routine.

Viewport Columns

The Viewport Columns attribute specifies the number of columns that should be
visible in the scroll area of the table widget. By default, thisvalueis set to 6.

If you first set the Scroll attribute to True, you can then set thisvalue to any size from
0 to n columns within the limits of your full table size. The full table size, or virtua
width in columns, is set with the Number of Columns attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Columns attribute
isignored, and the X Sizeand the Y Size properties are used.

In the generated * . pr o file, thisvalue is specified with the X_SCROLL_SIZE
keyword to the widget creation routine.

Viewport Rows

The Viewport Rows attribute specifies the number of rows that should be visiblein
the scroll area of the table widget. By default, this value is set to 6.

If you first set the Scroll attribute to True, you can then set this value to any size from
0 to n rows, within the limits of your full table size. The full table size, or virtual
height in rows, is set with the Number of Rows attribute.

This attribute is used only when the Component Sizing attribute is set to Default. If
you set the Component Sizing attribute to Explicit, either through the Properties
dialog or by dragging the component to specific size, the Viewport Rows attribute is
ignored, and the X Sizeand the Y Size properties are used.

Inthe generated * . pr o file, thisvalue is specified with the Y _SCROLL_SIZE
keyword to the widget creation routine.

Table Widget Events

For table widgets, you can set common event properties and table-specific event
properties. By default, event values are not set. For alist of events common to all
widgets, see “ Common Events’ on page 543.

These are the table widget-specific event properties:

Table Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 585

OnCellSelect

The OnCellSelect value is the routine that is called when cells are selected in the
table. When you set this value, the calling sequence looks like this in the generated
*_eventchb. profile

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when range of cellsis selected or deselected and is
of the following type:

{ WDGET_TABLE CELL_SEL, ID:OL, TOP:0OL, HANDLER OL, TYPE: 4,
SEL_LEFT: OL, SEL_TOP:OL, SEL_RI GHT:OL, SEL_BOTTOM OL }

The range of cells selected is given by the zero-based indices into the table specified
by the SEL_LEFT, SEL_TOP, SEL_RIGHT, and SEL_BOTTOM fields. When cells
are deselected, either by changing the selection or by clicking in the upper left corner
of thetable, an event is generated in which the SEL_LEFT, SEL_TOP, SEL_RIGHT,
and SEL_BOTTOM fields contain the value -1.

Note
Two WIDGET_TABLE_CELL_SEL events are generated when an existing
selection is changed to a new selection. If your code uses this event, be sure to
differentiate between select and deselect events.

OnColWidth

The OnColWidth value is the routine that is called when the column width is
changed. When you set this value, the calling sequence looks like thisin the
generated * _event cb. pro file

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when a column width is changed by the user and is
of the following type:

{ WDGET_TABLE_COLUWN W DTH, |D:0OL, TOP:0L, HANDLER OL, TYPE:7,
COLUMN: OL, W DTH: OL }

COLUMN contains the zero-based column number, and WIDTH contains the new
width.

Building IDL Applications Table Widget Properties

586

Chapter 21: Using the IDL GUIBuilder

OnDelete

The OnDelete value is the routine that is called when text is deleted from the table.
When you set this value, the calling sequence looks like thisin the generated
* _event ch. profile

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when any amount of text is deleted from acell of a
table widget and is of the following type:

{ WDGET_TABLE_DEL, ID: 0L, TOP:0OL, HANDLER OL, TYPE:2, OFFSET:OL,

LENGTH: OL, X:OL, Y:OL }

OFFSET isthe (zero-based) character position of the first character deleted, and it is
the insertion position that will result when the next character isinserted. LENGTH
gives the number of charactersinvolved. The X and Y fields give the zero-based
address of the cell within the table.

OnFocus

The OnFocus value is the routine that is called when the keyboard focus of the base
changes. When you set it, the calling sequence looks like this in the generated
* _event ch. pro file

pro <RoutineNanme>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is of the following type:

{ WDGET_KBRD_FOCUS, |D:0L, TOP:0L, HANDLER OL, ENTER O }

ENTER returns 1 (one) if the table widget is gaining the keyboard focus, or O (zero) if
the table widget is losing the keyboard focus.

OnlinsertChar

The OnlnsertChar value isthe routine that is called when text is inserted in the table.
When you set this value, the calling sequence looks like thisin the generated
*_event ch. profile

pro <Routi neName>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when a single character istyped into acell of a
table widget and is of the following type:

{ WDGET_TABLE CH, ID:0OL, TOP:0L, HANDLER OL, TYPE: 0, OFFSET:OL,
CH 0B, X OL, Y:O0L }

Table Widget Properties Building IDL Applications

Chapter 21: Using the IDL GUIBuilder 587

OFFSET isthe (zero-based) insertion position that will result after the character is
inserted. CH isthe ASCI| value of the character. The X and Y fields indicate the
zero-based address of the cell within the table.

OninsertString

The OnlnsertString valueistheroutine that is called when text isinserted in the table.
When you set this value, the calling sequence looks like thisin the generated
*_eventcb. profile

pro <routinenane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when multiple characters are pasted into a cell and
is of the following type:
{ WDGET_TABLE_STR, ID: 0L, TOP:0OL, HANDLER OL, TYPE: 1, OFFSET:OL,
STR'', X:0L, Y:0L }
OFFSET isthe (zero-based) insertion position that will result after the text isinserted.

STRisthestring to beinserted. The X and Y fieldsindicate the zero-based address of
the cell within the table.

OnlinvalidData

The OninValidDatavalue istheroutinethat is called when invalid datais set in acell.
When you set this value, the calling sequence looks like this in the generated
*_eventchb. profile

pro <Routi neNane>, Event

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when the text entered by the user does not pass
validation, and the user has finished editing the field (by pressing Tab or Enter). The
event structure is of the following type:

{ WDGET_TABLE_I| NVALI D_ENTRY, |D:0OL, TOP:0L, HANDLER: OL, TYPE: 8,
STR'', X OL, Y:0L }

STR contains invalid contents entered by the user as atext string. The X and Y fields
contain the cell location.

OnTextSelect

The OnTextSelect valueisthe routine that is called when text is selected in the table.
When you set this value, the calling sequence looks like thisin the generated
* eventch. profile

pro <Routi neNane>, Event

Building IDL Applications Table Widget Properties

588

Chapter 21: Using the IDL GUIBuilder

RoutineName is the name of the event procedure you specify. Event isthe returned
event structure, which is returned when an area of text is selected. The event structure
is of the following type:

{WDGET_TABLE _TEXT_SEL, |D:0OL, TOP:0L, HANDLER OL, TYPE: 3,
OFFSET: OL, LENGTH: OL, X OL, Y:O0L}

This event announces a change in the insertion point. OFFSET is the (zero-based)
character position of the first character to be selected. LENGTH gives the number of
charactersinvolved. A LENGTH of zero indicates that the widget has no selection,
and that the insertion position is given by OFFSET. The X and Y fields indicate the
zero-based address of the cell within the table.

Table Widget Properties Building IDL Applications

Chapter 22:

Widgets

The following topics are covered in this chapter:

OVEIVIEW ..ot 590
Widget Types. ... 592
Manipulating Widgets 597
Examples of Widget Programming 598
The Widget Application Model 599
Creating Widget Applications 602
Widget Examplel 605
WidgetValues 607
WidgetUserValues. 610
WidgetEvents 611
Widget Example2 617

Building IDL Applications

Using Draw Widgets 619
CreatingMenus 621
ControllingWidgets 626
Widget Example3 629
Widget Sizing....................... 631
Event Processing And Callbacks 637
Managing Widget Application State 640
Compound Widgets 642
Tips on Creating Widget Applications.. . . . 644
Compound Widget Example 646

589

590

Chapter 22: Widgets

Overview

Overview

IDL alows you to construct and manipulate graphical user interfaces using widgets.
Widgets (or controls, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interaction via
apointing device (usually amouse) and a keyboard. This style of graphical user
interaction offers many significant advantages over traditional command-line based
systems.

IDL widgets are significantly easier to use than other aternatives, such aswritingaC
language program using the native window system directly. IDL handles much of the
low-level work involved in using such toolkits. The interpretive nature of IDL makes
it easy to prototype potential user interfaces. In addition to the user interface, the
author of a program written in atraditional compiled language aso must implement
any computational and graphical code required by the program. IDL widget programs
can draw on the full computational and graphical abilities of IDL to supply these
components.

The style of widgets IDL creates depends on the windowing system supported by
your host computer. Unix and VMS hosts use Motif widgets, while Microsoft
Windows and Macintosh systems use their native toolkits. Although the different
toolkits produce applications with a dlightly different look and feel, most properly-
written widget applications work on all systems without change.

IDL graphical user interfaces are constructed by combining widgetsin atreelike
hierarchy. Each widget has one parent widget and zero or more child widgets. There
is one exception: the topmost widget (called atop-level base) is always a base widget
and has no parent.

Programs that use widgets are event driven. In an event driven system, the program
creates an interface and then waits for messages (events) to be sent to it from the
window system. Events are generated in response to user manipulation, such as
pressing a button or moving a slider. The program responds to events by carrying out
the action or computation specified by the programmer, and then waiting for the next
event. This approach to computing is fundamentally different from the traditional
command-based approach.

Note
You can use the IDL GUIBuilder to create user interfaces interactively. The IDL
GUIBuilder allows you to create and interface rapidly and generate the IDL source
code to create the interface. For information, see Chapter 21, “Using the
IDL GUIBuilder”.

Building IDL Applications

Chapter 22: Widgets 591

Running the Example Code

The example code used in this chapter is part of the IDL distribution. All of the files
mentioned are located in the exanpl es/ doc subdirectory of the IDL distribution.
By default, thisdirectory is part of IDL’s path; if you have not changed your path, you
will be able to run the examples as described here. See |PATH in the IDL Reference
Guide for information on IDL’s path.

Building IDL Applications Overview

592 Chapter 22: Widgets
Widget Types

IDL supports two types of widgets. Widget primitives are the base interface elements.
Compound widgets are more complex interface elements built in the IDL language
from the widget primitives. In addition, there are a number of dialogs which are
widget-like but which do not belong to awidget hierarchy.

Widget Primitives

Widget primitives are created by functions with names like WIDGET _BASE and
WIDGET_BUTTON. IDL providesthe following widget primitives:

Base

A base isawidget used to hold other widgets, including other base widgets. Base
widgets can optionally contain scroll bars that alow the base to be larger than the
space on the screen. In this case, only part of the baseisvisible at any given time, and
the scroll bars are used to control which part isvisible.

Base widgets are created by the WIDGET _BASE function. See WIDGET_BASE in
the IDL Reference Guide for more information.

Top-level bases are a special class of base widget created without a parent widget 1D.
Top-level bases can be organized into an application hierarchy by specifying the
GROUP_LEADER keyword. Top-level bases can be made to float above their group
leaders (viathe FLOATING keyword), or can be created as modal bases (viathe
MODAL keyword) that interrupt program execution until the user performs some
action. See “The Widget Application Model” on page 599 for additional discussion
of widget applications.

Button

A pushbutton is activated by moving the mouse cursor over the button and pressing a
mouse button. Button widgets are created by the WIDGET_BUTTON function. See
WIDGET_BUTTON inthe IDL Reference Guide for more information.

Draw

Draw widgets offer arectangular areathat works like a standard IDL graphics
window. Draw widgets can use either Direct graphics or Object graphics, depending
on how they are created. Any graphical output that can be produced by IDL can be
directed to one of these widgets, either through the WSET function or by using the
object reference of adraw widget's IDLgrwWindow object. Draw widgets can
optionally contain scrollbars that allow examining a graphical region larger than the

Widget Types Building IDL Applications

Chapter 22: Widgets 593

area containing the widget. Draw widgets are created by the WIDGET _DRAW
function. See WIDGET_DRAW in the IDL Reference Guide for more information.

Droplist

Droplist widgets display a single entry from alist of options. When selected, they
reveal the entire list. When anew option is selected from thislist, the list disappears
and the new selection is displayed. On systems using the Motif window system,
Droplist widgets look like buttons with labels that change depending on the item
selected from the drop-down list. Droplist widgets are created by the
WIDGET_DROPLIST function. See WIDGET_DROPLIST in the IDL Reference
Guide for more information.

Label

Label widgets display static text. They are similar to single-line text widgets but are
optimized for small labeling purposes. Text widgets should be used to display large
amounts of text. Label widgets are created by the WIDGET_LABEL function. See
WIDGET_LABEL inthe IDL Reference Guide for more information.

List

A list widget offersthe user alist of text elements from which to choose. Users can
select an item by pointing with the mouse cursor and pressing a button. List widgets
have a vertical scrollbar when there are more list items than are specified in the
Height property. List widgets are created by the WIDGET_LIST function. See
WIDGET _LIST inthe IDL Reference Guide for more information.

Slider

Slider widgets are used to select or indicate a value within arange of possible integer
values. They consist of arectangular region that represents the possible range of
values. Inside thisregion is a dliding pointer that displays the current value. This
pointer can be manipulated by the user via the mouse or from within IDL by the
WIDGET_CONTROL procedure. Slider widgets are created by the
WIDGET_SLIDER function. See WIDGET_SLIDER in the IDL Reference Guide
for more information.

Table

Tablewidgets are used to display information in tabular format. Individua table cells
(or ranges of cells) can be selected for editing by the user. Table widgets are created
by the WIDGET_TABLE function. See WIDGET_TABLE in the IDL Reference
Guide for more information.

Building IDL Applications Widget Types

594 Chapter 22: Widgets

Text

Text widgets are used to display text and to get text input from the user. They can
have one or more lines and can optionally contain scroll bars that allow viewing more
text than can otherwise be displayed. Text widgets are created by the
WIDGET_TEXT function. See WIDGET_TEXT in the IDL Reference Guide for
more information.

Compound Widgets

A compound widget is a complete, self-contained, reusable widget sub-tree that
behavesto alarge degree just like awidget primitive, but which iswritten in the IDL
language. Compound widget routines can be found (along with many other routines
that use the widgets) in thel i b subdirectory of the IDL distribution. All compound
widget filenames begin with “CW _" to make them easier to identify. The following
types of compound widgets are included in the IDL distribution.

Animation

The CW_ANIMATE compound widget — aong with its associated routines —
displays an animated sequence of images. See CW_ANIMATE in the IDL Reference
Guide.

Color Manipulation

The CW_CLR_INDEX compound widget displays a color bar and allows the user to
select acolor index. See CW_CLR_INDEX inthe IDL Reference Guide.

The CW_COLORSEL compound widget displays all the colorsin the current
colormap and allows the user to select color indices. See CW_COLORSEL inthe
IDL Reference Guide.

The CW_RGBSLIDER compound widget allows the user to adjust color values using
the RGB, CMY, HSV, and HL S color systems. See CW_RGBSLIDER inthe IDL
Reference Guide.

Data Entry and Display

The CW_FIELD compound widget simplifies building data-entry interfaces by
combining label and text widgets. See CW_FIELD in the IDL Reference Guide.

The CW_FORM compound widget allows you to create simple forms with text,
numeric fields, buttons, and droplists. See CW_FORM in the IDL Reference Guide.

Widget Types Building IDL Applications

Chapter 22: Widgets 595

Image Manipulation

The CW_DEFROI compound widget allows you to specify aregion of interest within
adraw widget. See CW_DEFROI in the IDL Reference Guide.

The CW_ZOOM compound widget displays origina and zoomed images side-by-
side. See CW_ZOOM in the IDL Reference Guide.

Orientation

The CW_ARCBALL compound widget alows the user to intuitively specify three-
dimensional orientations. See CW_ARCBALL inthe IDL Reference Guide.

The CW_ORIENT compound widget allows the user to interactively adjust the three-
dimensional drawing transformation. See CW_ORIENT in the IDL Reference Guide.

User Interface

The CW_BGROUP compound widget simplifies creation of a cluster of buttons.
Button groups can be simple menus in which each button acts independently,
exclusive groups (also known as “radio buttons’), or non-exclusive groups (often
called “checkboxes’). See CW_BGROUP in the IDL Reference Guide.

The CW_FSLIDER compound widget is aversion of the slider widget that handles
floating-point values. See CW_FSLIDER in the IDL Reference Guide.

The CW_PDMENU compound widget creates pulldown menus, which can include
sub-menus, from a set of buttons. See CW_PDMENU in the IDL Reference Guide.

See " Writing Compound Widgets’ on page 642 for information on writing your own
compound widgets.

Dialogs

A dialog is awidget-like user interface element that is not part of awidget hierarchy.
Dialogs are modal (or “blocking™”) elements, which means that when adialogis
displayed, no other interface elements (widgets or compound widgets) can be
manipulated until the user dismisses the dialog.

File and Directory Selection

File selection dialogs allow you to choose afile or directory viaagraphical interface.
The DIALOG_PICKFILE function returns the string containing the name of the
selected file. See DIALOG_PICKFILE in the IDL Reference Guide for more
information.

Building IDL Applications Widget Types

596

Chapter 22: Widgets

Message

Message dialogs are modal (or “blocking”) dialog boxes that can display warnings,
informational messages, or error messages. When amessage dialog is displayed, no
widgets can be manipulated until the user dismisses the dialog by clicking on one of
its buttons. Message dialogs do not belong to widget hierarchies; they are instantly
created when the DIALOG_MESSAGE function is called and block all widget
activity until dismissed. See DIALOG_MESSAGE in the IDL Reference Guide for
more information.

Printing

IDL providestwo dialogs for controlling printing. DIALOG_PRINTJOB opens a
native dialog that allows you to set the parameters for a printing job (such asthe
number of copiesto print). DIALOG_PRINTERSETUP opens a native dialog for
setting the applicable properties for a particular printer. See DIALOG_PRINTJOB
and DIALOG_PRINTERSETUP in the IDL Reference Guide for more information.

Widget Types Building IDL Applications

Chapter 22: Widgets 597
Manipulating Widgets

Widgets are controlled viatheir widget IDs. The widget ID isalong integer assigned
to the widget when it isfirst created. In practice, the widget ID of awidget is
contained in a named variable that you assign when you call the widget creation
function. For example, you might create a base widget with the following IDL
command:

base = W DGET_BASE()

Here, the IDL variable base contains the widget 1D of the top-level widget base that
is created.

IDL provides several routines that allow you to manipulate and manage widgets:

e WIDGET_CONTROL allowsyou to realize (make visible on your screen)
widget hierarchies, manipulate them, and destroy them when you are finished.

« WIDGET_EVENT alows you to process events generated by a specific
widget hierarchy.

« WIDGET_INFO alowsyou to obtain information about the state of a specific
widget or widget hierarchy.

« XMANAGER provides an event loop and manages events generated by a
widget hierarchy.

* XREGISTERED allows you to test whether a specific widget is currently
registered with XMANAGER.

These widget manipulation routines are discussed in more detail in the following
sections.

Building IDL Applications Manipulating Widgets

598 Chapter 22: Widgets

Examples of Widget Programming

A number of simple examples of widget programming can be seen by running the
IDL program exanpl es. pr o, which can be found in the/ exanpl es/ i sc folder
of the IDL distribution. A widget interface with a pulldown menu of small widget
applications should appear.

Examples of Widget Programming Building IDL Applications

Chapter 22: Widgets 599

The Widget Application Model

Using widgets, you can create entire IDL applications with graphical user interfaces.
Although widget applications are running “inside” IDL, awell-designed program can
behave and appear just like a stand-alone application.

A widget application consists of agroup of top-level bases organized hierarchicaly.
Groups of widgets are defined by setting the GROUP_L EADER keyword when
creating the widget. Group membership controls how and when widgets are iconized,
which layer they appear in, and when they are destroyed.

The following figure depicts a widget application group hierarchy consisting of six
top-level basesin three groups: base 1 leads all six bases, base 2 leads bases 4 and 5,
and base 3 leads base 6. What does this mean? Operations that affect base 2 also
affect bases 4 and 5. Operations that affect base 3 also affect base 6. Operations that
affect base 1 affect all six bases—that is, a group includes not only those bases that
explicitly claim one base as their leader, but also all bases |ed by those member bases.

basel
base 2 base 3
Group _ Group _
leader = Dasel leader = Dasel
base 4 base 5 base 6
Group _ Group _ Group _
leader = base2 leader = Dase2 leader = base 3

Figure 22-1: A widget application group hierarchy with six top-level bases.

Thefollowing IDL commands would create this hierarchy:

basel = W DGET_BASE()

base2

Building IDL Applications

W DGET_BASE(GROUP_LEADER=base1)

The Widget Application Model

600

Chapter 22: Widgets

base3 = W DGET_BASE(GROUP_LEADER=basel)
base4 = W DGET_BASE(GROUP_LEADER=base?)
base5 = W DGET_BASE(GROUP_LEADER=base2)
base6 = W DGET_BASE(GROUP_LEADER=base3)
Iconization

On Motif and Windows platforms, bases and groups of bases can be iconized (or
minimized) by clicking the system minimize control. When a group leader is
iconized, all members of the group are minimized as well. Minimization has no
meaning on the Macintosh.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within alayer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

All widgets within a group hierarchy share the same layer—that is, when one group
member has the input focus, all members of the group hierarchy are displayed in a
layer that appearsin front of al other groups or applications. Within the layer, the
widgets can have an arbitrary Z-order.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group are destroyed as well.

See Iconizing, Layering, and Destroying Groups of Top-Level Bases under
WIDGET_BASE in the IDL Reference Guide for detailed information on how group
membership defines widget behavior on different platforms.

Floating bases

Top-level base widgets created with the FLOATING keyword set will float above
their group leaders, even though they share the same layer. Floating bases and their
group leaders are iconized in asingle icon (on platforms where iconization is
possible). Floating bases are destroyed when their group leaders are destroyed.

Modal bases

Top-level base widgets created with the MODAL keyword will float above their
group leaders, and will suspend processing in the widget application until they are
dismissed. (Dialogs are generally modal.) Modal bases cannot be iconized, and on
some platforms other bases cannot be moved or iconized while the modal dialog is
present. Modal bases cannot have scroll bars or menubars.

The Widget Application Model Building IDL Applications

Chapter 22: Widgets 601

Menubars

Widget applications can have an application-specific menubar, created by the
APP_MBAR keyword to WIDGET_BASE. Currently, application menubars are
equivalent to individual menubars created by the MBAR keyword on Motif and
Windows platforms. On the Macintosh, the menubar defined by APP_MBAR “takes
over” the Macintosh system menubar, while menubars defined by MBAR are
included on an individual top-level base widget.

Building IDL Applications The Widget Application Model

602 Chapter 22: Widgets
Creating Widget Applications

An application using widgets goes through the following cycle:
Construct the Widget Hierarchy

You must first build awidget hierarchy. Start with one or more top-level bases
(created with the WIDGET _BASE function) in a hierarchy described by
GROUP_LEADER relationships. Combine other widget creation functions —
WIDGET_BUTTON, CW_PDMENU, etc. — to create and organize the user
interface of your widget application. At this point, the widgets exist only within
IDL—nothing has been created or displayed on the window system.

Provide an Event-Handling Routine

In order for awidget application to do anything, you must provide a routine that
examines events, determines what action to take, and implements the action. Actions
may involve computation, graphics display, or updating the widget interface itself.

For the best performance, it isimportant that the program spend most of itstimein
the event loop provided by the event handling routine. Some widgetswill not respond
rapidly to user manipulation when not in this loop. Widget-based programs should
walit for user-generated events, handle them as quickly as possible, and quickly return
to wait for more events. Event processing is discussed in detail in “Widget Events’ on
page 611 and in “ Event Processing And Callbacks’ on page 637.

Event handling routines can use the WIDGET _CONTROL procedure to manipulate
widgets. Possible actions include the following:

» Obtain or change the value of awidget (see “Widget Values’ on page 607)
using the APPEND, GET_VALUE, and SET_VALUE keywords.

» Obtain or change the value of awidget’s user value (discussed in “Widget User
Values’ on page 610) using the GET_UVALUE and SET_UVALUE
keywords.

* Map and unmap widgets using the MAP keyword. Unmapped widgets are
removed from the screen and become invisible, but they still exist.

» Change awidget's sensitivity using the SENSITIVE keyword. When a widget
isinsensitive, it indicates the fact by changing its appearance (often by graying
itself or displaying text with dashed lines) and ignores any user input. It is
useful to make widgets insensitive at points where it would be inconvenient to
get events from them (for example, if your program is waiting for input from
another source).

Creating Widget Applications Building IDL Applications

Chapter 22: Widgets 603

« Change the settings of toggle buttons using the SET_BUTTON keyword.

e Push awidget hierarchy behind the other windows on the screen, or pull them
in front using the SHOW keyword.

» If you expect an operation to be slow, display the “hourglass’ cursor while the
application is busy and not able to respond to user actions by setting the
HOURGLASS keyword.

Realize the Widgets

Bring the widget hierarchy into existence using the REALIZE keyword to the
WIDGET_CONTROL procedure. This causes the widgets to be created and

displayed.
Register the Program with the XMANAGER

Register the program with the XM ANAGER procedure. Your widget application then
walits for events to be reported to it and reacts as specified in the event handling
routine.

Eventsare obtained by XMANAGER viathe WIDGET_EVENT function and passed
to the calling routine (your event handler) in the form of an IDL structure variable.
Each type of widget returns a different type of structure, the exact form of whichis
described in the documentation for the individual widget creation functions in the
IDL Reference Guide. However, every event structure has the samefirst three
elements. These are long integers named | D, TOP, and HANDLER. | Disthe widget
ID of the widget generating the event. TOP isthe widget 1D of the top-level base
containing ID. HANDLER is important for event handler functions, which are
discussed later in this chapter.

When an event appears, XMANAGER passes it to an event-handling procedure
specified by the program, and the event handler takes some appropriate action based
on the event. This means that multiple widget applications can run simultaneously —
XMANAGER dispatches the events to the appropriate routine.

Destroy the Widgets

When the application has finished (usually when the user clickson a*“Done” or
“Quit” button), destroy the widget hierarchy using the WIDGET _CONTROL
procedure’'s DESTROY keyword. This causesall resources related to the hierarchy to
be freed and removes it from the screen.

Building IDL Applications Creating Widget Applications

604 Chapter 22: Widgets

Handling Widget Application Errors

At times, widget applications may experience errors that stop the processing of
widget events by XMANAGER. Thisis most common during the development of the
app